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CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction: Li-ion batteries

Li-ion batteries have attracted great attention throughout the world as rechargeable energy
sources. A wide variety of anode materials, including Si, Sn, C, Sb, Al, Mg, Bi [1], LisT'i5012 [2]
and transition-metal oxides [3] were extensively studied for their potential in building high-
performance batteries. Among these possible anode materials, silicon appears to be most
promising because of its large capacity (four times that of traditional anodes). However, the
large volumetric expansion and subsequent mechanical failure caused by the insertion of Li
represents a significant obstacle hindering the widespread application of Si as an anode [4-8].
As a solution to this problem, researchers are trying the alternative of reducing system size and
using nano-structures to reduce the anode stress [9-12]. The first step in understanding the
failure mechanism was to model the stress generated during the lithiation/delithiation process.
The experimental results show that the induced stress at the fully lithiated or delithiated thin
film is on the order of 1 — 2GPa, below the yield stress of amorphous Si [13,14]. However, in
current models [13,15-17], plasticity is assumed to be the stress-relaxation mechanism, so there
is a need to develop a new stress relaxation model that allows system stress to relax below the
yield stress. For this purpose, a new anisotropic compositional strain model in amorphous Si
anodes was developed; it excludes plasticity as the dominant factor in stress relaxation and

introduces a novel concept for stress relaxation occurring below the yield stress.

1.2 Introduction: Hollow nanoparticles

The specific optical, electrical, magnetic, and thermal properties of hollow nanoparticles

make them prominent candidates for biomedical applications (drug delivery, disease diagnosis,
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and cancer therapy), lightweight filters, composites, catalysts, waste treatment, insulators, and
photoelectric devices [18,19]. To synthesize a hollow nanoparticle with proper properties, we
first must understand the mechanisms and parameters that affect void nucleation and growth
to control the synthesis process, so extensive experimental studies have been done on void
formation in Cu, Al, Fe, Zn, Co, Mg, Ni, and Cd NPs [20-28]. The oxidation process is
a simple method for producing hollow NPs [20-24]. In this case, because of differences in
diffusivity of metal atoms in core (metal) and shell (oxide), a net vacancy flux flows toward
the core and results in supersaturation of vacancies and nanovoid nucleation. This phenomena
can be modeled by the Kirkendall effect [29]. In this section, the experimental and numerical
studies on hollow formation of Cu NPs will be summarized.

Ezperimental studies: Hung, et al. [21] have produced Cu NPs with thermal decomposition
of copper (I) acetate (CuOAc) in trioctylamine (TOA). They observed that different solvents
(hexane and chloroform) form different final structures (solid and hollow oxidized NPs) at room
temperature, and they concluded that differences in solubility of oxygen in different solvents
causes this phenomenon. Nakamura et al. [20,22] have exposed Cu nanoparticles to air at
373 K for 3.6 ks and found that the oxide thickness (Cu20) increases to a certain limiting
thickness that depends on the diameter of the NPs. In their experiments a single void appears
at the center of a NP and oxide thickness is approximately uniform. Theoretical studies:
Atomistic methods have their own limitations with respect to size and time scales, so one must
work near the melting temperature to be capable of modeling void nucleation and growth using
these methods [28,29]. However, hollow formation can occur near room temperature [20,21,23]
and continuum approaches can overcome this limitation. In continuum approaches [30-32],
nucleation of void and mechanics were neglected. The common wisdom in these approaches is
that the void nucleates due to tensile stress in the core [32]. This hypothesis also explains the
difference between the calculated growth time and the experimental growth time. However,
surface tension induces compressive stress in the core, and this compressive pressure can reduce
the equilibrium concentration of vacancies and promote void nucleation. A comprehensive

model is thus needed to consider all these parameters and use to predict hollow formation.
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1.3 Thesis Organization

Chapter 2 describes development of a general large-strain thermodynamic approach in-
troducing anisotropic (tensorial) compositional expansion/contraction in elastoplastic material
under stress tensor. Employing a consistent thermodynamic method, a simple kinetic equation
for the deviatoric part of the compositional deformation rate is derived and introduced as the
new mechanism for stress relaxation below the yield stress. Consequently, a nontrivial expres-
sion for the chemical potential is found, and this new chemical potential has an additional term
resulting from deviatoric stresses, resulting in an increase in the driving force for both compo-
sitional expansion and contraction. This coupled diffusion and mechanical model is applied to
lithiation and delithiation of thin-film, solid, and hollow spherical nanoparticles.

Chapter 3 describes development of a coupled continuum-mechanics approach for nucle-
ation and growth of a nanovoid in reacting nanoparticles (copper nanoparticles). The effects
of several parameters (i.e. pressure, temperature, and size of a vacancy) on void nucleation
criteria are investigated. The results show that compressive pressure and reduced temperature
increases void nucleation probability. This is explained by decreasing in the equilibrium con-

centration of vacancies at the void surface. Finally, a method for controlling void nucleation

and growth is suggested.
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CHAPTER 2. ANISOTROPIC COMPOSITIONAL EXPANSION IN
ELASTOPLASTIC MATERIALS AND CORRESPONDING CHEMICAL
POTENTIAL: LARGE-STRAIN FORMULATION AND APPLICATION

TO AMORPHOUS LITHIATED SILICON

Modified from papers published in the Journal of Mechanics and Physics of Solids and

Scientific Report

Valery I. Levitas' and Hamed Attariani 2

ABSTRACT

A general large-strain thermodynamic approach with anisotropic (tensorial) compositional
expansion/contraction in elastoplastic material under stress tensor is developed. The dissipa-
tion rate due to compositional expansion/contraction is introduced. Adapting and utilizing a
previously formulated postulate of realizability, we derived a simple equation for the deviatoric
part of the compositional deformation rate. This leads to a nontrivial generalization of the
concept and expression for the chemical potential. It receives a contribution from deviatoric
stresses, which leads to an increase in the driving force for both the compositional expansion
and contraction and to some new phenomena. Our model provides a remarkable description of
the known experimental and atomistic simulation data on the biaxial stress evolution during
lithiation-delithiation of Li,Si on a rigid substrate with just one constant kinetic coefficient.
In contrast to known approaches, it does not involve plasticity, because the yield strength is
higher than the stresses generated during lithiation-delithiation. This allowed us to suggest

a method for reduction in internal stresses by cyclic change in Li concentration with a small

Towa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Material Science
and Engineering, Ames, Iowa 50011, U.S.A.
“Jowa State University, Department of Aerospace Engineering, Ames, Iowa 50011, U.S.A.
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amplitude, and our simulations were in qualitative agreement with known experiments. The
coupled diffusion and mechanical model was applied to lithiation and delithiation of thin-film,
solid, and hollow spherical nanoparticles. The importance of the contribution of the deviatoric

stress on the diffusion is demonstrated.

2.1 Introduction

Starting with the celebrated work by [1,2], the concept of the chemical potential of multi-
component materials with diffusion under nonhydrostatic stresses received significant develop-
ment. More recent large-strain formulations have been presented in [3-7]. Practical motivation
for large-strain formulations was recently received from the development of lithium-ion bat-
teries. In particular, S% is a promising anode material for Li-ion batteries since it is able to
absorb a large amount of Li [8,9]. The maximum insertion of Li corresponds to Lig 4.5, which
possesses a theoretical Li capacity of 4200 mAh/g, an order of magnitude larger than for a
graphite anode [8,9]. However, insertion of such an amount of Li is accompanied by a 334%
volumetric expansion, which under constraint conditions leads to huge stresses that may cause
fracture of an Li,Si anode [10-14]. This is one of the main problems that prevents industrial
application of Si anodes, and it is why understanding of the stress development and relaxation
during lithiation-delithiation is of great applied and basic importance. For nanoscale anodes
(nanowires, particles, and films [15-18]), fracture is suppressed, and large compositional volu-
metric deformations of Li,S7 under constrained conditions are believed to be accommodated
by plastic flow [5,6,19,20]. All continuum approaches to stress relaxation in Li,Si anodes
are based on classical viscoplasticity theory [5,6,19,20], but recent density functional theory
(DFT) simulations [20] have demonstrated that the yield strength of Li,Si is at least two
times higher than the stresses generated during lithiation-delithiation in a thin film on a rigid
substrate for all x. This practically excludes plasticity as a relaxation mechanism and requires
approaches different from those in [5], [19,20], and [6]. The fact that atomistic simulations for
crystalline materials without defects (for example, dislocations and grain boundaries) usually
overestimate the yield strength cannot be used as an excuse. For amorphous nanomaterial,

the same-atomistic-caleulations [20] describe satisfactory experimental data on biaxial stress
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relaxation in Si film during insertion-extraction. In the most recent model [21,22], the flow
(change in shape) and reaction (change in composition) are assumed to be the concurrent
non-equilibrium processes that are coupled thermodynamically. It has two fitting material pa-
rameters, but it was not checked against atomistic calculations or experiments. One of our
goals in this paper was to suggest and develop a different approach in which stress relaxation
in Li;Si anodes occurs not due to classical plasticity when the yield condition is satisfied but
due to anisotropic (tensorial) compositional straining that occurs during insertion-extraction
reaction at any deviatoric stresses (i.e., below the yield strength). The anisotropic swelling in
nanowires was observed and modeled in [23] and [24]. The source of anisotropy is orientation-
dependent mobility of the core/shell interface, where the core is the crystalline Si and the
shell is the amorphous Si, which is much different from the model considered here. Also,
plasticity is the active mechanism for the stress relaxation in [23] and [24]. Here, we derive
constitutive equations for anisotropic compositional expansion in a material point—i.e., without
involving interfaces. [25] and [26] showed that the first lithiation of amorphous Si thin film
and nanoparticles is an interface-controlled process rather than diffusion-controlled. However,
after the first cycle, the amorphous-amorphous interface disappears, and diffusion becomes the
rate-controlling mechanism which means that our approach can be used after the first cycle of
lithiation. Using the irreversible thermodynamic approach and adapting a previously formu-
lated postulate of realizability [7,27-32], we derived a simple rate equation for the deviatoric
part of the compositional deformation rate. This equation, together with the elasticity rule
and just one fitted kinetic constant, provides a remarkable description of known experimental
and atomistic simulation data on the biaxial stress evolution during lithiation-delithiation of
Li,Si on a rigid substrate [20]. This proves the conceptual correctness and necessity of using
tensorial compositional strain for initially isotropic (amorphous) materials. After proving va-
lidity, we utilized the same model for justification of a method of reduction of internal stresses
in a constrained Si anode by cyclic lithiation-delithiation with a small magnitude of variation
in Li concentration. The results of our simulations are in qualitative agreement with available
experiments [33]. Other problems related to coupled diffusion, compositional expansion, and

stress generation and relaxation were solved with the finite-element method (FEM) for thin
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film on substrate, solid, and hollow spherical Si anodes.

Tensorial compositional strain and the rate-type equation for it raise some additional ques-
tions. Traditionally, the compositional dissipation rate was assumed to be zero, which de-
termined the explicit expression for the chemical potential. Here, we introduced a nonzero
dissipation rate related to insertion-extraction as a part of the compositional stress power with
some factor ¢ (0 < ¢ < 1), while another part of the compositional stress power with a factor
1 — ¢ contributes to the chemical potential. In this way, a chemical potential receives addi-
tional contribution due to deviatoric stresses, which surprisingly leads to an increase in the
driving force for both insertion and extraction simultaneously. This causes some problems in
choosing, which process will in fact occur under deviatoric stresses. We postulated that the
process leading to the minimal chemical potential will take place—namely, insertion—which leads
to a nontrivial relationship for the flux of Li atoms vs. the driving force, including the jump
in flux. While there no data to specify the factor {, the obtained jump in flux, if confirmed
experimentally, would allow us to determine (. The effect of parameter ¢ and the contribution
to the chemical potential due to deviatoric stress on the diffusion is analyzed numerically.

While applications here are based on the simplest model without plasticity, it is clear that
in the general case (for example, for a larger sample and a lower yield strength) a combination
of anisotropic compositional expansion and classical plasticity should be considered. Our gen-
eral theory includes both and resolves some related kinematic and thermodynamic issues. In
particular, the advantage of additive decomposition of the inelastic deformation rate into com-
positional and plastic parts in comparison with multiplicative decomposition of the deformation
gradient is demonstrated.

A similar approach is applicable to the lithiation-delithiation of other anode materials (for
example, Sn) and to large compositional deformation and stress relaxation for other material
systems. Also, such an approach can be applied to other processes such as chemical reactions
and melting under nonhydrostatic conditions [34,35] when anisotropic (tensorial) transforma-
tion strain can be introduced and described in a similar thermodynamic way. Some preliminary
results were reported in a short letter [36].

Direct tensor notations are used. Vectors and tensors are denoted in boldface type; A-B
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and A:B are the contraction of tensors over one and two indices. A superscript ¢ and —1 de-
note transposition and inverse operations, subscript s means symmetrization of the tensors, I
is the unit tensor of the second order, dev A is a deviatoric part of A, | A |:= (At :A) Ve is the
modulus (amplitude) of tensor A, V is the gradient operator in the undeformed configuration,

div = V- is the divergence operator, and := means equals per definition.

2.1.1 Thermodynamic treatment of insertion-extraction in elastoplastic material

While the derivations below are generic for any material with compositional expansion, we
will focus on insertion-extraction of the component A in the amorphous (isotropic) matrix B
according to the equation zA + B = A, B, where x is the number of moles of the component
A per mole of the component B. In particular, we will consider insertion-extraction of Li in
amorphous Si, xLi+ St = Li,Si. The initial part of the thermodynamic derivations is similar
to that in [2], [4], [5], and [7]. The kinematics of large deformations with multiple intermediate
configurations is described in [37] and [30].

Kinematics. The motion of the elastoplastic material with insertion-extraction and diffusion
will be described by a vector function r = r(r¢,t), where o and r are the positions of points
in reference (undeformed) €y and the actual (deformed)  configurations, respectively; t is
the time. The reference configuration is chosen to be undeformed component B,—i.e., the state

with £ = 0. The multiplicative decomposition of the deformation gradient, F,

or
F = =F.F.F,, 1
81'*0 p ( )

into elastic, compositional (insertional), and plastic parts will be used. Plastic deformation
gradient F, transforms the reference configuration € into the intermediate configuration €2,
and compositional deformation gradient F. transforms the configuration (2, into the unloaded
configuration €).. Alternative kinematic decompositions will be considered in Section 6. We

define the rate of deformation gradient as

F = 88_;;:Fe'Fc'Fp+Fe'Fc'Fp+F6'FC'FP7 (2)

where v :=r is the particle velocity, and the inverse deformation gradient as

F'=F"“F,".F;. (3)
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Then, the multiplicative decomposition Eq. (1) results in the additive decomposition of the

velocity gradient 1 := g—? = F.F~! and the deformation rate d := (I),:
l=FcF,;' + Fe-F F"“F;' + Fo-Fo-FyF-F, M F =1, + 1.+ 1, (4)
d= (Fe-Fgl)s + (Fe-FC-Fgl-Fgl)S + (FE.FC-FP-Fgl-FC—l-Fgl)S —d.+d,+d, (5

into elastic, compositional, and plastic parts.
Mass balance. For the molar fraction of A per mole of B, x (similar, for Li and Si), the
following mass-balance equation is valid in the reference configuration g :

i + Vpdivj = 0; i 4+ Vsidivj =0, (6)
where Vg and Vs; are the molar volumes of B and Si, and j is the flux of the A (or L) diffusing
constituent defined as a number of moles per unit reference area per unit time.

Thermodynamic laws. In the reference configuration )y, consider a volume Vy of multi-
phase and multicomponent material with a boundary Sp. Allow, on one part of surface S¥ the
traction vector p, to be prescribed and on the other part, S, the displacement vector u to
be given, although mixed boundary conditions are also possible. We will use an energy balance
equation (the first law of thermodynamics) and the entropy-balance equation combined with

the Clausius-Duhem inequality (the second law of thermodynamics) for the whole volume Vj :

. d
/(Po‘v—hO'no—M'no)dSO—a/UdVozog (7)
So Vo

d ho
Spr = %/SdVo —l—/?'nodSoZO. (8)

Here, hg is the heat flux, ng is the unit normal to Sy, U is the specific (per-unit reference
volume) internal energy, s is the specific entropy, S, is the total entropy production, 6 > 0
is the temperature, and p is the chemical potential of the A. We will need the relationship
Py = P-ng between the traction vector p, and the first nonsymmetric Piola-Kirchoff (nominal)
stress tensor P—i.e., the force per unit area in the undeformed state. Using the Green-Gauss
theorem to transform the surface-to-volume integrals, equation p, = P-ng, Vv = 5)—,% = F, as
well as the equilibrium equation V - P = 0, we transform Eqgs. (7) and (8) to

/(P”:F— U — divhg — div(pj)) dVy = 0, 9)
Vo
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Sy = /(s + div %) dVy > 0. (10)
Vo

Due to local interaction, Egs. (9) and (10) allow the equivalent local form

P:F — U —divhy — pdivj — j-Vp=0, (11)
~ R \
Sp7» = s + 5 div h() - ? ‘h() > 0, (12)

where Spr is the local entropy production per unit reference volume. Excluding the expression
div hy from Eq. (11) and substituting it in Eq. (12) and multiplying by temperature, we

obtain after evident transformations the following inequality:

- . . 0
D:=0S,, =P":F - U + HS—VT‘hO—,udivj—jV,u:

. . N v o
:P:F—w—SH—T-ho—udzvj—J-V,uZO. (13)

Here, D is the rate of dissipation per unit volume in €2¢, and @ = U — 6 s is the Helmholtz

free energy per unit reference volume. Using the balance Eq. (6), we transform

D = P':F— zﬁ—sé—%-ho—i—‘_/glui’—jtv,uz 0. (14)

We can define the chemical potential of A per unit volume of B,-i.e., per unit reference
volume-as i := VB_ L. Alternatively, we can define the molar concentration of A per unit
volume of B,-as ¢ := 1_/]; Y2 -i.e., the number of moles of A per unit reference volume. We

assume that ¢ = (Fe, F¢, F),, 0. x), and substituting Eq. (2) and ¢ in Eq. (14), we obtain

oY\ AW AW
g . . t—— . — —_ = = A
D—<FchP aFZ).FE <8+69)6+<VB ax)x—i-

(Fp-Pt-Fe - %) P, — % chog—3-Vu+ (Pt.Fe.Fc: — %) F,>0. (15)
c p

Then, the traditional assumption that the dissipation rate is independent of F . and 6 leads to

the elasticity rule and the expression for entropy:

0y s:—a—d} (16)

F..F..Pt =
c P aFé? 897

as well as to the residual dissipation inequality

7 (91/)) ) " oY\ ; 0 % Vo .
== - — . . — —— | L. . —_ — — 19 2 )
D (VB o x—i—(FpP F, OF F.+X:F), 7 ho—3Vu>0
0

OF

X" .= P'.F,F. — (17)
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For simplicity, we assume that all processes are thermodynamically uncoupled and that in-

equality (17) splits into four stronger inequalities

H 3¢> t 2P ;
= — == -P'Fo— —— | :F.>0;
(VB = a:+<FpP Fo S ) iFe20

. 0
X,:F, > 0; V?-ho <0; jVu<o. (18)
The linear relationships between the generalized thermodynamic forces and the fluxes for ma-

terials isotropic in €)g result in the Fourier’s and Fick’s laws:
A>0; j=—-bcVu=—-bVz'aVu, b>0, (19)

with A and b standing for the thermal conductivity and mobility coefficients, respectively.

Substituting the Fick’s law in the balance Eq. (6), we obtain the diffusion equation
. . . . Dy aV Bpo
¢ = div (beVy), = = div (bzVu), b 79 P ( R0 ) (20)

Here, pg, Do, a, and V g are the mean stress, pre-exponential factor, and activation volume of

diffusion, respectively.

2.1.2 Chemical potential and compositional deformation gradient tensor
2.1.2.1 Compositional dissipation rate

First, let us transform Fe-F, = F.-R.-U, = F.-U,., where U, and R, are symmetric right
stretch and proper orthogonal rotation tensors associated with the compositional deformation
gradient F., and F, = F.-R, is the rotated elastic deformation gradient (the bar will be omitted
below without any confusion). Thus, it is sufficient to consider symmetric (i.e., rotation-free)
F.=U.=U fz In this way, rotations are combined with the elastic deformation gradient, and
all results (constitutive equations) are independent of the rigid-body rotation in the unloaded

configuration .. Thus,
F=F.U-F,, F'=F"U"F (21)
Utilizing the relationship between the true Cauchy stress o and the Piola-Kirchoff stress P,

P=Jo-F"' - P'=JF o, (22)
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where J = detF = dV/dVj is the volume ratio in the actual and reference configurations, let

us transform the compositional power in Eq. (18);:

F,P'.F.U.= JF,F ‘o F.:U,=JU,“F,' .¢-F.:U.= Jo:F . U.U, -F,!

= Joid,; d.:= (Fe-UC-Ugl-Fgl)S , (23)

where the symmetry of the Cauchy stress was used, and d. is the compositional part of the
deformation rate d; see Eq. (4). Using the component form of the tensors in the Cartesian
coordinate system, we express

de: (FeikalUém—ngmj—l) :Az’jklUécl; Akl . (szUlm 1Fm] 1) : (24)
S

S

d.=AU.; U,=A'4d, (25)

where the fourth-rank tensor A has components A%*. Note that the expression for tensor
A in component-free form can be found in [37]. Then, the dissipative inequality (18); for

compositional expansion transforms to

= ¢ > 0: =

Traditionally, U, is considered as a spherical tensor describing isotropic volumetric expansion.
Although for amorphous isotropic material in a stress-free condition this is the only possibility,
stresses can induce anisotropy of A (Li) and B (S7) atom distributions in order to minimize
the Gibbs energy of the system and lead to tensorial U.. For crystalline Li,Si, U, should be
tensorial even under zero stresses since for many values of x crystal lattice is noncubic [38,39].
Below, we will develop a constitutive equation for U, for amorphous isotropic material and
derive a more general expression for the chemical potential.

It is convenient to present U, = Jo By % [40], where J. = det(U,) is the ratio of elemen-
tal volumes with concentration of A, z, and zero, and U f is the part of the compositional

deformation gradient that describes isochoric change in shape, detU CS = 1. Then,

syt Ve gy L1
ot _3JI+U U B.UULF 3JI+FU USLEY,
_li R —— —1)_ T p— S-1 _ detU?
d. = JI+(F6 UIUSR) ¢ BEUTUSU — oS = s =127
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Thus, multiplicative decomposition of deformation gradient U, into the parts characterizing
change in volume and shape results in an additive decomposition of the deformation rate into
spherical and deviatoric parts that characterize change in volume and shape. Similar to Eq.
(25), we express
&S = devd, = (FUS -Ufl-Fel) — AU, UL = AT (28)
s
assuming that the inverse tensor A" exists since Eq. (28); connects the five independent
components of the tensors df and Uf Because free energy ¢ is a function of U, (i.e., of U 5
and J.) and z, and J, is a function of z, explicit dependence of ¢ on J. can be omitted without
loss of generality. Then, decomposing true stress & = pol + S into mean stress py = %O‘ZI and
deviatoric Cauchy stress S, we transform the compositional power in Eq. (23):
Joid, = JupoJ. + JS: (FUS -Uf-l-Fgl) — Jupode+ JS:dS, (29
s
where J, = detF, is the ratio of elemental volumes in the deformed state and after elastic
unloading. Since J = detF = detF.detF detF), = J.J. (detF, = 1 due to plastic incompres-

sibility), J/J. = Je in Eq.(29). Substituting Eqgs.(28) and (29) in inequality Eq.(18); leads to

1 oY dJC> . = 19 5 oY s
_— = — — e > 0: = — — . .
(VB e + Jepo o )& +J8Sd. >0; JS:=JS—dev YT A . (30)

c
where S is the generalized deviatoric stress. Traditionally (for df = 0), the multiplier of &
in the dissipation inequality is assumed to be zero, which defines an explicit expression for
the chemical potential ;. In our more general case with dCS # 0, we cannot exclude the fact
that the structural rearrangements described by df cause dissipation. Thus, we decompose the

compositional power of deviatoric stresses in Eq. (30):

o 81/) dJ(’) . Q.75 Q.5
_ — - : : >
(VB o Jepo )i (1 ) I8+ (I8:d] > 0 (31)

into two parts, one of them that is proportional to the parameter 0 < ¢ < 1 and produces

dissipation and the other that is proportional to 1 — ¢ and does not:

_ oY dJ.\ . &
D, = ¢J8:d° > 0; T o) (1= QI8 =0 (32)
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According to inequality (32), df must depend on S-otherwise, df and S can be chosen in
many ways that violate dissipation inequality. Even for { = 0, df should depend on 8, or it is
impossible to satisfy equality (32), for arbitrary S and d‘cg . For isotropic amorphous materials,
dCS is an isotropic function of S-i.e., tensors \dcs | and S have the same principal axes. To allow

S
change in U f during insertion-extraction only, we impose U, = 0 when & = 0. Thus, in general

d; = k(8,)\d;| = k(S,2)H (S, z |&])|2;

d|m (505" = HS,m i)l ke 2
d7) = (d5:d) " = H (S, |i])|i; =@ (33)

where |d?| and k are the magnitude and directing tensor of the d?, |k| = 1. If we assume that
dCS is proportional to & rather than to |Z|, it would violate the dissipation inequality S:df > 0.
This means that in the first approximation the deformation rate d‘cg is the same for insertion
and extraction. In the second approximation, we can assume that H depends on & rather than
on |z|, but we will keep || for simplicity. Substituting Eq. (33) in Eq. (32) and allowing for

|z| = &sign(z), we obtain

D. = (JS8:k(S,2)H(S,z,|x|)sign(i)i = X > 0; X, :=(JS:k(S,2)H(S,z, |x|)sign(i).

0 dJ. T e CN )
(‘—% - a—f + Jep()% +(1—¢)JS:k(S,2)H (S, x, \T!)e?qn(r)) & =0. (34)

We also define for the sign function sign(0) = 0. The term in parenthesis is equal to zero,

defining the chemical potential

N dJ,

koY ate oL/ e N .
= = G = e G = (1= Q)ISk(S, 2)H (S, . il sign (). (35)

2.1.2.2 Constitutive equation for the deviatoric compositional deformation

rate

It is assumed that functions ¢(S, x) and H(S, z, |#|) should be determined from experiments
or atomistic simulations, and our main task now is to find k. Expression D, = (J S’:df > 0 can
make the impression that ¢JS and df are generalized thermodynamic forces and fluxes and,
for example Ziegler’s extremum principles [41] can be applied. However, S depends not only on
dCS but also on |z, and actual thermodynamic force and flux are X, and &, respectively, with

X depending not-only-on-d but parametrically on S, k, and |d3|/|i]. Also, in the particular
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case in which ¢ = 0, X, = 0, the chemical potential u depends parametrically on S, k, \df l,
and |Z|. Thus, Ziegler’s principles are not directly applicable.

To find an actual directing tensor k among all possible k*, we applied the postulate of
realizability formulated in [28,29] and utilized for the solution of various problems for finding
extremum principles (see below). In Appendix, we first derived the equation for k from the
consideration of the chemical potential, then from the the compositional dissipation rate, and
demonstrated that the two results coincide. We obtained the collinearity of k and 8 for both

insertion and extraction:

S
k=—. (36)
S|
Utilizing Eq. (33), we obtain for the deviatoric part of the compositional strain rate
s S & .
d; = = H(S,z, |2])|]. (37)
S|
Then the compositional dissipation rate in Eq. (34) transforms to
De= X >0; X.:=(J|S|H(S, z,|@|)sign(d). (38)

Remarks on the postulate of realizability. The postulate of realizability was applied in [28,29] to
derive Ziegler’s [41] principles of minimum (or maximum) dissipation rate and the correspond-
ing potential relationship between generalized thermodynamic forces and fluxes for a nonlinear
thermodynamic system (both time-dependent and time-independent) as well as their general-
ization. The postulate of realizability was utilized to describe phase transformations in elastic
materials with the threshold-type interface dissipation at the microscale [42,43] and semicoher-
ent interfaces [29,44]. It was also applied to find all unknown parameters (like position, shape,
and orientation of a nucleus and parameters at the moving phase interface) for phase trans-
formations in elastoplastic materials at the macroscale [7,27-30,45] and corresponding FEM
solutions [44,46,47], for chemical reactions [32,48], and for twinning and fracture [7, 27, 46].
These applications are not described by Ziegler’s principles, because unknown parameters do
not represent thermodynamic fluxes or forces. In these cases, the postulate of realizability

resulted in the principle of the maximum of the net thermodynamic driving force (i.e., driving
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force minus dissipative threshold), which for time-dependent systems was reformulated into the
principle of minimum transformation time. In a kinetically stricter formulation, the principle
of the minimum of transformation time was derived for sublimation, chemical decomposition,
and melting inside elastoplastic materials [49]. Another class of applications is related to the
description of a stable post-bifurcation behavior of elastoplastic materials without and with
phase transformations [28,29,47], which includes formulation of the global phase transforma-
tion criterion. One of the nontrivial applications of this approach is finding equations for plastic
spin for anisotropic elastoplastic materials [31].

Note that the postulate of realizability does not represent a new thermodynamics law. It is
a rational tool for choosing some relationship among various possibilities, independent of the
application field. The problem should be formulated in the following way. Let the relationship
between some input matrix ¢ and output matrix b (they can be tensors or tensor functions
of any rank or set of scalars functions) satisfy one scalar equation F'(a,b) = 0, which is not
sufficient to determine relationship b(a). Here F' can be a function or functional of a and b.
Then some a is fixed for which for all possible b* (determined from specific problem formulation)
the inequality F'(a,b*) < 0 is valid. This means that none of the actual b corresponds to the
chosen a. Then we continuously change a and check for each fixed a when equality F'(a,b) = 0
is met for some b for the first time, i.e., for all other b* one has F(a,b*) < 0. Thus, for the
chosen input a, the process under consideration can in principle occur with the output b for
which F'(a,b) = 0. Then the postulate of realizability states: as soon as some process can
occur, it will occur at the first chance. That means that the obtained b does correspond to the
given a. Thus, for actual b one has F(a,b) = 0, for all other b* one has F(a, b*) < 0, i.e., actual
b is determined from the extremum principle F'(a,b) =0 > F(a, b*).

While the postulate of realizability is independent of a specific system, its numerous appli-
cations to the dissipative systems give an impression that it picked up an essential property of
dissipative systems. The statement ”as soon as some process can occur, it will occur at the
first chance” represents some plausible instability statement, which is inexplicitly assumed when
instability is studied. That is why the postulate of realizability results under corresponding

consideration in instability criteria [28,29,31,47].
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The final result depends on the information F'(a,b) = 0 that is chosen to describe the
system, which is the main hypothesis. Whether a specific choice of F(a,b) = 0 is correct or
not should be decided by comparison with experiments. Eq. (36) is a result for which we did
not prescribe any priory restrictions on the function k(g) In a more general case, we could
assume that a scalar function M (8) := S:k(S) is known (similar to the dissipation function),
and then the postulate of realizability would produce a more general result than Eq. (36).

Physical mechanisms behind anisotropic compositional expansion/contraction. When atoms
of the component A are inserted in a nonhydrostatically stressed representative volume of A, B
(in particular, Li atoms are inserted in Li,;S1), the driving force for insertion depends on which
position of the amorphous matrix they will reside.  Different insertion positions result in
different deviatoric compositional strain increments. The larger the product gzdf is, the larger
the driving force for insertion is, and the smaller the activation energy for a jump into the
corresponding atomic position is. Also, insertion of A atoms may shift atoms of matrix A, B,
leading to additional df. That is the why positioning of new inserting atoms tends to increase
the deviatoric compositional strain increment in the direction of the deviatoric stress. The
maximization is constrained, because for each § there is a maximum possible magnitude ]d‘cg |
for the optimal placement of new atoms, which cannot be reached because of the stochastic
character of the process and role of the entropy. Similarly, during extraction, A atoms from
those positions will be extracted, which maximize S :df under similar constraint. In the current
phenomenological approach this constraint is expressed through the function H (S’ L X, T).

Note that the above model considers anisotropic expansion/contraction during change in
x only. However, under fixed x deviatoric stresses can cause redistribution of the positions of
A (and B) atoms, producing an additional change in shape U S , which is not described by d‘cg .
This is a completely different process than anisotropic expansion/contraction during change
in z. For a crystalline material, a jump of interstitial atoms from one site to another under
an action of stresses and its return back after stress release is a well-known mechanism of
internal friction. For amorphous materials, such change in shape under an action of stresses
at fixed x is one of the mechanisms of viscoplastic deformation which should be included in

corresponding flow rule (see Section 4). Note that this mechanism requires higher activation
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energy than anisotropic expansion/contraction during a change in x. Indeed, the driving force
for insertion/extraction can be large even without deviatoric stresses, due to the gradient of
the chemical potential. Then, potential barriers for insertion/extraction in this case will be
overcome without deviatoric stresses; deviatoric stresses produce an additional contribution
and guide in which position atoms reside or from which position they are extracted. For con-
stant x, deviatoric stresses are the only driving force for redistribution of positions of A and
B atoms, and such a redistribution requires breaking of atomic bonds. A separate internal
variable should be introduced, and an evolution equation for it should be determined, which
will be done elsewhere. We may assume that if the time scale after completing insertion is not
too large, then this redistribution can be neglected. In the opposite case of a slow change in
stresses at constant x, the time scale of such a rearrangement is much faster than the time
scale of change in deviatoric stresses. Then, at each stress increment, a thermodynamic equi-
librium state is reached, and we can consider that the internal variable is excluded using energy
minimization. Then, U° is a function of § and can be effectively included in elastic strain,
leading to nonlinear elasticity. The nonlinear elasticity rule for large stresses was obtained
in [20] for Li,Si with the help of atomistic simulations. Some irregularities in the stress-strain
curve in [20] indicate that atomic rearrangements may occur jump-wise and require kinetic

description.

2.1.2.3 Constitutive equation for the chemical potential

Substituting Eq. (36) into expression (35) for u, one finds

H 0 e 0 O JISIH(S, . i) sign(
=gy Ty (1= C)J|S|H (S, z, |&|)sign(i). (39)

As was discussed earlier, the reason for the appearance of the deviatoric part of the compo-
sitional deformation rate is the deviatoric stresses. For § = 0, one should have df = 0-.e.,
H(0,z,|z|) = 0. The key consequence of the last term in Eq. (39) is that the appearance of the
deviatoric part of the compositional deformation rate always increases the magnitude of the

driving force for the A transport for both insertion and extraction—i.e., it decreases pu(B) for
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insertion reaction and increases u(B) for the extraction reaction. This is logical because if S
represents internal stresses that appear due to volumetric change during insertion or extraction
and suppresses these processes (reduces |, — p(B)]), then Eq. (37) describes the relaxation of
internal stresses, which should increase |y, —u(B)|. If 8 represents prescribed external stresses,
then they produce positive compositional work along the d that also increases |u, — pu(B)].
This, however, leads to an unusual situation for small driving forces |Ap|, when the driving
force is positive simultaneously for both insertion and extraction. Indeed, let us consider
an A, B sample under a hydrostatic condition that is in thermodynamic equilibrium with
the reservoir-i.e., pu, = pi—o with pz—g := M(B,S' = 0,2 = 0). Let the shear modulus be
independent of x (see below) and the last term in Eq. (39) be the only contribution from
the deviatoric stress to the chemical potential. If we apply deviatoric stress S to the sample,
according to Eq. (39) the chemical potential of A, B will be reduced for & > 0 and increased
for # < 0 by the same value (1 — ¢)J|S|H(S, 2, |#|)-i.e., deviatoric stress produces the same
driving force for insertion and extraction. Let us assume that under applied deviatoric stresses
an A, B sample is fluctuationally divided into two samples separated by an interface, and that
in one of them insertion occurred and in the other extraction took place (Fig.2.1). We neglect
interface energy and elastic energy due to a jump in U, across an interface. However, the
chemical potential of a sample with & > 0 is smaller than that for a sample with & < O-i.e.,
tiso < pip<o—and the chemical potential of such a heterogeneous sample is larger than the
potential p;~¢ for the case in which the entire sample undergoes insertion (Fig.2.1). Thus, it
is more probable that the system evolution is governed by the minimization of the chemical

potential. Consequently, we postulate (Fig.2.2) that

. =1 .
>0 and j=0b0Vg x(pr — pi>0)/Ay if pr > priso;

# <0 and j = bV 5 el — pico)/ Ay if iy < jriso. (40)

where Ay is the size of the order of magnitude of the size of a Li,Si sample. Eq. (40) can
be interpreted as one more consequence of the postulate of realizability: if the process leading
to the minimization of the chemical potential (i.e., insertion) can occur, it will occur. Then,

insertion will occur for y, > p;~0, despite the fact that the opposite process (extraction) could
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Figure 2.1 (a) Anisotropic compositional deformation of Li;Si during lithiation under devi-
atoric stresses. (b) When deviatoric stress S, applied to a sample, produces the
same driving force for insertion and extraction, the Li,Si sample may be fluc-
tuationally divided into two samples separated by an interface, in one of which
insertion occurs and in the other extraction takes place.

Figure 2.2 Magnitude of the Li flux vs. chemical potential of Li reservoir u, under deviatoric
stresses (solid line, Eq. (40)).
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be faster in the range puz;so < pr < pz—o because it leads to a lower chemical potential. It
follows from Fig. 2.2 that for p, = pz>o0, that when the extraction is possible only, there is a
jump in flux because i, — ptz<q is finite. This jump and the corresponding jump in the chemical
potential, pz<0 — tz>0, can be used for experimental verification of our theory and for finding
the parameter ¢ that determines the contribution of the deviatoric stresses to the chemical
potential and compositional dissipation rate.

The same conclusion is valid if the elastic moduli depend on = because the corresponding
term in the chemical potential is independent of # and will promote one of the processes when
deviatoric stress is applied. Also, the mobility coefficient may be different for insertion and
extraction. Finally, we may consider a more general case with H(S,z, ), depending on the
direction of the process. This does not change the conclusion that deviatoric stress promotes

insertion and extraction simultaneously but with different magnitudes.

2.1.3 Plastic Flow Rule

Similar to the consideration of compositional changes, let us transform the plastic part of

the stress power in Eq. (17):
P.F . U:F,=JF '.9.F, U.F, = Jo-F,-U:F,F' = Joil, = Jo:d,,  (41)

where the relationship (22) between the Cauchy stress o and P, the definition of I, (Eqgs. (4)
and (5)), and the symmetry of the Cauchy stress are taken into account. First, we neglect

porosity and assume that the plastic flow is volume-preserving—i.e.,

Lly = FoU-FpF, U F ' = FyF, ! = ZZ?
p

=0 and Jp:=detF, =1. (42)

Since d,, is a deviatoric tensor, o:d,, = S:d,,. To get a unique definition of the plastic deformation

gradient, we assume that the extended plastic spin is zero—i.e.
(p)o = (Fe-U.-Fy-F,' U - F, 1), = 0. (43)

This eliminates the freedom of an arbitrary rigid-body rotation in the €, and allows us to

satisfy-in-the-simplest-way-the principle of material objectivity. Without compositional strain,
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a constitutive equation for the plastic spin for anisotropic materials was derived in [31] with
the help of the postulate of realizability. For isotropic material, this equation results in zero
plastic spin (see also papers by [50] and [51]). A similar assumption was accepted in various
works on large plastic strains without compositional strain [52,53] and for materials with phase
transformations and transformation strains [54,55]. This allows us to determine the rate of

plastic deformation gradient Fp through the rate of plastic deformation d,:
F.-U.-F,-F,".U;'-F;' =d, — F,=F;'.U.'d,F. (44)

Alternatively, we can assume that F, is a rotation-free symmetric tensor. The plastic dissipa-

tion rate per unit undeformed volume in Eq. (17) can be transformed to

D, = (Pt-Fe-UC - 8—¢> R, = (JS — dev (F-6—¢.F;1 ~F;1>

dy, = Spid, > 0. (45)
OF, OF, )

S

Then, the yield condition in the S}, space and the viscoplastic flow rule can be accepted as

f(SvaeaUme):E)So — dp:O,

F(8y, Fo.Ue,Fpo2) >0 — dy=f(S,, Fo,Ue, Fp). (46)

While F, describes strain hardening/softening and plastic strain-induced anisotropy, U, char-
acterizes both geometric changes (i.e., change in positions of atoms A and B) and changes in
atomic bonding, which may affect viscoplastic properties independent of . The effect of F', is
similar but significantly smaller, first because of smaller rearrangement in positions of atoms A
and B, and second because of the relatively small magnitude of elastic strains in comparison
with compositional strains. Even for initially isotropic amorphous materials, for which f and f
are isotropic functions of their arguments, anisotropy in the yield condition and flow rule can be
caused by F, , U, and F,. Under rigid-body rotation dr* = Q-dr in the current configuration,

where @ is the arbitrary proper orthogonal tensor, we have
S, =Q-8,Q" d,=Qd, Q" F;=QF,, (47)
while all other tensors are not altered. Then Eq. (46) transforms to
f(Q-8pQ" QFcUc Fpz) <0 — dy=0;

f(Q'Sp'Qt7Q'F67UCva7$) >0 — Q'dp‘Qt = f(Q'Sp'Qth'Fea Uc»Fp)a (48)
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which should be valid for an arbitrary @. Choosing @ = Rf, we obtain the form of the

constitutive equations that is independent of the rigid-body rotation:

f(R-SyR, U, Uy Fpoz) <0 — d,=0;

f(R-8yR.,UeUo Fpo2) >0 — dy=Re-f(R.-SyR., U, Uc, F,)-R..  (49)

Similar to the compositional power, the plastic dissipation rate can be decomposed in many
ways into a product of dissipative stresses and the deformation rate. Our choice of S, and d,
has the advantages that it is justified for the anisotropic elasticity rule and is not contradictory

for the isotropic elasticity rule.

2.1.4 Specification of the Constitutive Equations
2.1.4.1 Compositional dissipation rate

Let us consider some specifications of Eq. (37). For isotropic (e.g., amorphous) materials,
H depends on the second |S| and the third I3(8) invariants of the deviatoric stress tensor-i.e.,
H = H(|S|,I5(8),z,|#|). If we assume, as in traditional models, that the chemical potential
in Eq. (35) is a state function—i.e., it is independent of |Z| (but still can depend on sign(z))—
then the function H is independent of |#|. Expanding H into a Taylor series in |S|, we obtain

a linear relationship between d> and |i|:
d? = 8li| (a(5(8), z) + |8Ja1 (I3(8), 2) + ...) . (50)

With regard to the concentration dependence, we believe that dCS should be scaled with the
magnitude of the rate of volumetric compositional strain, |.J,| = % ||. If J. is a linear function

of x, this does not introduce the concentration dependence, but otherwise it does. We assume
s wdJde, . - - -
d; = 8—]il (A(I3(8), 2) + 8] A1 (I5(8), @) + -.) . (51)

The third invariant, I 5(3' ), characterizes the effect of the mode of the stress state (shear, tension,

oI compression)-and-in-the first approximation can be omitted. When nonlinear dependence
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on |8] is neglected, (A = 0), Eq. (51) simplifies to

(¢

dS = A(x)é%m; A>0. (52)

In the simplest case, A can be considered to be a constant. In general, all functions in the
equation for df may also depend on temperature and pressure. In addition, according to DFT
simulations [20], function .J. is slightly different for insertion and extraction, so we may use two
different functions: JI for & > 0 and J_ for & < 0. Similarly, A can be different for insertion
and extraction, and we may also use A" for # > 0 and A~ for & < 0. With Eq. (52), Eq. (39)

for the chemical potential transforms to

W endd
7 = o Jepo I A(1—=¢)JS:S o sign (). (53)

As the next approximation we can assume that S = 8 in all previous equations.

2.1.4.2 Elasticity rule

In all atomistic simulations, elastic moduli are calculated by considering elastic pertur-
bation, taking unloaded configuration €). as the reference one [38,39]. This automatically
assumes independence of the elasticity rule of F, and U.-i.e., it should not include any infor-
mation about the reference configurations €1y and €2,. In addition, let us transform elasticity
rule Eq. (16); to the form consistent with such a definition. Let us introduce a Lagrangian

elastic strain E, = 0.5(F.-F, — I). Using relation (22) between the stresses ¢ and P and

relation ;;,/}e = Fe-aa—ge, we transform Eq. (16); to the form
JF . F,Flo=JF o= 0 FL (54)
OFE,
_ oY R _ _ O
-l Lt — 1 gt—1 _ -1
oc=J 'F, JE. F.; — 6:=J.F_".0F, J, 9. (55)

Both the left- and right-hand sides of Eq. (55)2 are defined in the unloaded configuration (.
and do not contain any information about configurations 29 and €2,,. If we accept the simplest

expression for the free energy per unit volume of the unloaded configuration 2.,

Jg ' = J (0, ) + 0.5E.:C(z):E,, (56)
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where 1, (0, ) is the concentrational part of the free energy and C' is the fourth-rank tensor

of (isotropic) elastic moduli, then Eq. (55) results in
o =C(x):E; 0 =J 'F.C(x):E.-F.. (57)

Note that the same expression for the elastic energy was accepted in [5] but in the refer-
ence configuration (i.e., J 19 = J ',(0,7) + 0.5E.:C(x):E,), which led to the equation
o = J'F,-C:E.-F., that explicitly depends on the reference configurations Qg. While .J, is
approximately equal to 1 for small elastic strain, J = J.J. exceeds 4 because of large compo-
sitional volume change. This introduces strong nonphysical dependence of the elasticity rule
on compositional volume change and corresponding nonphysical contribution to the chemical
potential. Such a contradiction was realized in [5] and was treated in a simplified way by
accepting that the Young’s modulus grows with a (while it decreases with x in atomistic sim-

ulations [39]).

2.1.4.3 Chemical free energy

Energy of the stress-free AyBy_, or A, B system per unit reference volume is

Yn(0,0) = V5 () (0) + 18 (0) + 05" (2,0) + RO(wIny + (1 - y))), y=-——, (58)

where R is the universal gas constant, y is the molar fraction of A, MOA and ,uéB are the standard

chemical potentials of A and B, 9{7¢ is the molar excess energy per mole of B, and the last

term represents mixing entropy per mole of B. The excess energy per mole is defined in [56] as

(2, 0) = Timazc(l — ¢) (Aoc+ Bo(l —¢)), ¢= , (59)

where Zae is the maximum solubility of Li in Si. Substituting Egs. (56)-(58) in Eq. (53), we

obtain more explicit expression for the chemical potential:

1
Lo (14'(6) + ROy — 3 (Ao — Bo) & +2 (Ao — 2Bo) T+ Bo ) + (60)
Vi Vi

dC(x dJ. dJ. = mdJ. . .
0.5JCE6:#:EB +0.5 . E.:.C(x):E. — Jepo o A(1-¢)JS:S . sign(z).
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Note that constitutive equations for plasticity can be found—e.g., in [5,19], and [6].

2.1.5 Relationships for Alternative Kinematic Decomposition

Let us assume that we have determined experimentally the constitutive equations for two
separate cases: (1) when plasticity is absent, and (2) when compositional expansion is absent.
Then, we would like to obtain the simplest constitutive equations for simultaneous occurrence
of plastic flow and compositional expansion under the assumption that these two processes
occur independently of each other. Several definitions of mutual independence of processes
can be found in [37]. If we can derive such equations, then the mutual interaction of these
processes can be included in the next approximation. However, the main problem is whether
one is able to derive the simplest equations. Analyzing all of the above equations obtained
for compositional expansion, we do not see any traces of plastic strain. Thus, equations for
compositional expansion are independent of plastic strain. At the same time, the definition
of the plastic part of the deformation rate d,, (Eq. (5)) and, consequently, the corresponding
constitutive Eqs. (49) explicitly contain F.. The reason for such a dependence is the multi-
plicative decomposition Eq. (1), in which F, is the last multiplier. If one changes the sequence
in Eq. (1) from F.-F), to F),-F, then the plastic part of the deformation rate and consequently
the flow rule will be independent of F'., but the compositional part of the deformation rate will
include F,. Here, we consider an alternative kinematics and the corresponding derivation of
the constitutive equations, which do not have such a drawback.

We start with the following multiplicative decomposition of the deformation gradient
F=F.,U, (61)

into elastic and inelastic parts, with U; = U f considered to be rotation-free. Inelastic deforma-
tion gradient U; transforms the reference configuration {2y into the intermediate, stress-free

configuration €2;, which is used as the reference one for the elasticity rule. Then,

F :Fe'Ui—l-Fe'Ui; F_IZUi_l‘Ff:l, (62)
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and we derive the additive decomposition of the velocity gradient I and deformation rate d

l=F,F ' +F.U-U“F,' =1, +1; (63)

d= (FF—l) + (Fe-Ui-Ui‘l-F;l>S —=d. +d; (64)

into elastic and inelastic contributions. As the main kinematic hypothesis, we accept an additive

decomposition of the inelastic deformation rate into compositional and plastic parts:

di:(Fe-Ui-Ui_l-Fgl)S:dC+c_lp; d, — (Fe-UC-Uc‘l-Fe‘l); d, = (Fe-Up-Ugl-Fgl) (65)

S s )
The important point of Eq. (65) is that compositional and plastic deformation gradients are
assumed to be rotation free- i.e., U, = U% and U, = Ufg. This allows us to connect each
of the contributions to the deformation rate with the corresponding deformation gradients by

invertible relations similar to those in Eqgs. (24) and (25):

d; = A;:U;, U,=A"d; d.=A.U., U.= Ac_lzdc; Elp = Ap:Up, Up = Agl:t_ip(66)

(]

with corresponding fourth-rank tensors A;, A., and A,. The equation for d. did not change in
comparison with Eq. (5), and all of the constitutive equations for compositional strains remain
the same. The equation for d, does not contain F'. now, which will allow us to formulate the
flow rule independent of F..

Our initial point of the thermodynamic treatment will be Eq. (14), in which we omit terms
with V6§ and V p (assuming that all processes are thermodynamically uncoupled and using

inequalities (18)) and express stress power as P': F = Jo:d:
D = Jod — ¢ — 50 +Vglui> 0. (67)

We assume that ¢ = (F¢,U.,Up, 0, x), and substituting ¢, Eq. (65), and Eq. (66) in Eq.

(67), we obtain

. _ oY . oy ov 1\ 5
_ . . 1 . _ . 1). . 1].
D= Jo: (Fe F; )S— aEe.Ee+ (Ja GUC‘AC >.dc+ (Ja'——aUp‘Ap ).dp

We can transform o:F,-F.! = F '.o.F_':F!.F, = F_'0-F_':E,. Then, the traditional

assumptionsthat-the.dissipation rate is independent of E. and 6 leads to the elasticity rule (55)
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and the expression for entropy (16), as well as to the residual dissipation inequality:

7 8¢> . -
= (= == : d, > 0;
D (VB e &+ Xeod. + X,id, > 0;
gy 0% 4 gy O 4
X.:=Jo OUC‘A“ ;o Xpi=Jo aUp.Ap . (69)

We assume that plastic low and compositional expansion are thermodynamically uncoupled

and that inequality (69) splits into two stronger inequalities:

1% W) . -
_— = Xod. >0, X,d,>0. 70

<VB oz ) * + = plp = (70)
Equation (70); coincides with Eq. (26), which means that all equations for compositional

strain remain the same as for multiplicative decomposition. Since, for plastically incompressible

material, d,, is a deviator, for the plastic dissipation rate we have

D, = dev(X,):d, > 0;  dev(X)p) := JS — dew <;I}Z} :A;1> ) (71)
P

Then, the yield condition in the dev(X)) space and the viscoplastic flow rule are

f(dev(Xp)’Fev Uchpym) < 0 — ‘_ip = 0’

fldev(X,), Fe, U Up,x) >0 —  dy = f(dev(X,), Fe, U, Up). (72)
Application of the principle of objectivity results in

f(Re-dev(Xp)-Re, U, Ue,Up,2) <0 = d,

0; (73)

f(RL-dev(X,)-R., U, U, Uy, x) >0 —  dy = Re-f(R.-dev(X,)-R.,U.,U.,U,) - R.

If U, is excluded from the arguments in Eq. (73), the flow rule is independent of compositional
expansion, since the definition of (_ip does not include U,.. This is an advantage of the additive
decomposition Eq. (65) in comparison with multiplicative decomposition.

Note that if U, and U, are not arguments of the functions dCS, f, and f, they should not

even be introduced, and Eq. (65) simplifies to

d; = (FoUUF') =d.+dy, (74)
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2.1.6 Verification and Application of the Developed Model

In this section, the lithiation-delithiation processes for different structures (thin film, spher-
ical solid, and hollow nanoparticle) are studied by coupled diffusion and mechanical formulation

with neglected plasticity.

2.1.6.1 The total system of equations in the undeformed reference configura-

tion
1. Kinematics:
F=F, U ES:%(FZ-Fe—I); U.=J'3US. (75)
2. Compositional and elastic parts of the Jacobian:
J=JJe; J.=det(F.); J.=1+¢g with g0 = 3nex, (76)

where 7. and g are linear coefficients of compositional expansion and volumetric strain.

3. The kinetic equation for the deviatoric compositional deformation rate:

& = dev(d,) — (F S .S -F;1> - A(x)S%\ﬁd; A0, (77)
S
4. Relationships between stresses:
o=J"'P -F'=pI+8. (78)
5. The isotropic elasticity rule:
-1 ¢ E E
oc=J, F.C(x):E.-F C=KII+2GD=———I1+——D, (79)

3(1—2v) (1+v)
where K, G, and E are the bulk, shear, and Young’s moduli; v is the Poisson’s ratio; IT =
{6ij0m}, D = %{5%53'1 + 0udjn — ééijékl} are the volumetric and deviatoric parts of the fourth-

rank unit tensor, and J;; are the Kronecker delta.

6. Diffusion flux:
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7. Chemical potential:

1
L= — (4l (0) + ROy — 3 (Ao — Bo) & +2 (Ao — 2By) T+ Do ) + (81)
VB VB
dC(z) . dJe -, . ) dJ. edJe
0.5J.E.: o :E.+0.5 . E.:C(x):E. — Jepo T A1 —¢)JS:S . sign(z);
_~ x x
C—xmax’ V=1 (82)
8. Diffusion equation:
T = div (%xV,u) : (83)
9. Equilibrium equation:
V-P=0. (84)

The boundary conditions for the diffusion equation are accepted in the linearized form of the

Butler-Volmer equation [57]:

Lithiation : ng-j = jo(1 — /Tmaz) Jno-F ' tong (85)

—1t,

Delithiation : ng-j = —jo(x/Tmaz) JNo-F~ " ng,

where jo represents the charging rate per unit actual (deformed) area. The charging rate is the
required time for charging the battery from an empty state to a fully charged state, and it is
designated by C/n, where n has the time unit. For example, a charger rated C/8 would charge
the battery to full capacity in 8 hrs. We used two charging rates, C'/8 for thin film and C/0.55
for solid and hollow nanoparticles, which correspond to jo = 1.4x 107 and 1.03 x 10~° mol /m?s,
respectively. The tensor JF ! transforms flux from the actual to the reference configuration.

All constants are collected in Table.2.1. Finite-element code COMSOL Multiphysics (v.
3.5, COMSOL, Inc.) has been utilized to solve the above system of equations. The solution
was performed in the reference configuration, then components of true Cauchy stress tensor
were calculated. The results are presented in the reference geometry.

In all of the problems below, rotations and shear stresses are absent; the solution can
be found in terms of principal stresses and total, elastic, and compositional strains, and all

principal axes coincide. Decomposition of the deformation rate in Eq. (5) reduces to

d=UU ' =UqU;'+U.U.'=d.+d; d=WnU; d.=WnU; d.=InU, (86)
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because tensors F, and F ! eliminate each other. Equation (86) results in additive decompo-

sition of the logarithmic strains:

el =lnU=mU.+ U, =+ (87)

Table 2.1 Material properties

T 300 K
Tmax 3
Dy 1x107%  m?/s [23]
Ag -29.55 x10% J/mol | [56]
By -38.6 x10%  J/mol | [56]
Vsi | 1.2052 x107° m?/mol | [6]
Q@ 0.27 [56]
Ne 0.2356 [6]
Ey 90.13 GPa 58]
v 0.28 [6]
e -0.5576 58]
A 0.47 GPa~!

2.1.6.2 Thin film at rigid substrate: Homogeneous state

To verify our model against experiments and DFT simulations, the problem on the biaxial
stress generation and relaxation in the S film-like anode during lithiation-delithiation on the
rigid substrate is modeled using a formulation similar to that in [5] and [20]. The schematic
of the problem and the boundary conditions are shown in Fig.2.3. Diffusion is considered to
be fast enough so that x and consequently all fields are homogeneous. Thus, diffusion and
equilibrium Eqgs. (83) and (84) are omitted. The concentration of Li, x, increases for lithiation
and decreases for delithiation as the loading parameter.

The boundary conditions result in the following constraint conditions: F} = F» = 1 for in-
plane principal components of the deformation gradient (due to attachment to a rigid substrate)
and stress-free condition o3 = 0 for out-of-plane principal stress.

Three different functions are considered for variation of elastic moduli with composition
x (constant, linear, and exponential) to study the sensitivity of the simulation to the elastic

moduli. The exponential function E/(1 — v) = 127.1exp(—0.5576z) was fitted to describe

www.manharaa.com



35

Li
by vvibeyy
F=F=0 7' o
o3=0 LIXSI
P &

VA 4 Va4 LA

Figure 2.3 Schematics of thin film and boundary conditions. The film is constrained at the
lateral sides. The Li concentration is homogeneous throughout the film.

experimental data and atomistic simulations in [59] and [39]. The linear function was taken
from [6], E = Eo(1+ngx), with Ey and ng for the Young’s modulus of a — Si and the variation
rate of Young’s modulus with concentration (Table2.1). The results show that the biaxial
stress during lithiation is less sensitive to the variation in Young’s modulus than the stress for
the delithiation process.

Constant A = 0.47 GPa~! (Table2.1) in the kinetic equation for the deviatoric part of
the compositional deformation rate is found from the best fit of biaxial stress o = 01 = o9
at © = 2 to experiment and atomistic simulations in [20]. Our results for evolution of o(x)
in Fig.2.4 demonstrate very good qualitative and quantitative agreements with both DFT
calculations and experiments from [20] for both lithiation and delithiation. If it is necessary,
comparison could be made even better by including the nonlinear relationship J.(z) as in [36]
and by considering A = A(x) and fitting to experiment and/or DFT simulations, as well as
by using different A(z) for insertion and extraction. However, the most important result is
that comparison with experiment and DFT simulations is good enough with just a single
fitted parameter A, which provides proof of conceptual correctness of the idea of anisotropic
compositional strain instead of plasticity. In contrast, for the viscoplastic relaxation model [5],
two material parameters and the yield strength as a function of z are fitted to experiments;
however, agreement with experiment for o(z) is not as good as here. The obtained A is used

below for all other problems. Since in our model there is no threshold for the stress relaxation
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and it occurs both for lithiation-delithiation, a simple suggestion for reducing stresses would be
an oscillatory change in z with a small magnitude—e.g., x = a + acos(t); here t = t/100 s is the
dimensionless time and 100 s is a typical diffusion time for lithium through a 100-nm silicon
film [20]. In Fig.2.5a, oscillations started after complete discharge in order to release stresses.
Such a significant reduction in stresses is in qualitative agreement with experiments [33]. In
contrast, simulation of cyclic lithiation-delithiation in [5] results in almost constant stresses. In
Fig. 2.5b, the goal is to keep tensile stresses below 0.8 GPa during delithiation by superposition

of multiple oscillatory change in x, = = z¢ + 0.01cos(t). Therefore, we can control the stress

level to enhance the battery life.

o, (Gpa) Experiment (Zhao et al., 2012)
= DFT (Zhao et al., 2012)
3 —--— Constant Young's modulus
{ Linear Young's modulus
2b. L — — Exponential Young's modulus

Figure 2.4 Simulated biaxial stress o(z) during lithiation-delithiation of a thin-film on a rigid
substrate based on the current theory in comparison with experimental results and
atomistic simulations from [20]. Very good correspondence is observed with just
single-material parameter A fitted to reproduce experiment and DFT simulations
at x = 2.

Remark. Note that the constitutive equations are written for thermodynamic variables
averaged over some representative volume and characteristic time. That is why thermal fluc-
tuations are excluded from them. Thus, one cannot say that thermal fluctuations, which are
always present, may lead to oscillation in concentration and stress relaxation with time without
any external action. However, in experiments, there are always fluctuations in the boundary

conditions which may lead to a spontaneous oscillation of concentration and almost complete

stress relaxation. In experiments [33], there are stress oscillations superposed on the reducing
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Figure 2.5 (a) Reduction in biaxial stress with time after near completion of delithiation
(z = a in Fig.2.4) under oscillatory change in z. (b) Keeping tensile stresses
below 0.8 GPa during delithiation by superposition of multiple oscillatory change

in z, = xp + 0.01cos(t) when stress reaches 0.8 GPa until it reduces to zero.

in time stress value during a pause between lithiation/delithiation cycles, i.e., at presumably
constant x. One of the possible interpretations is that this is due to spontaneous oscillation
of concentration. Rate of stress relaxation reduces with a reduction in stress level, similar to
our predictions. However, there are no data to confirm that stress may reduce to zero rather
than to some finite value. If the latter would be the case, our model can be simply modified
to take this into account. Let us assume that the free energy 1 has a simplest additional term
s = 0.5aJU CS:U CS Then for coinciding principle axes of all tensors, according to Eq. (30)
S =28 dev (% Uf) = 8 — adev (Uf . U:) In this case, oscillation of concentration
according to Eq. 552) will relax stresses until § = 0, i.e., S = adev (Uf . Uf) Thus, the

obtained result encourages the experimental determination of the minimal stress which can be

obtained due to a multiple oscillatory change in x, which will lead to a more precise model.

2.1.6.3 Thin film at rigid substrate: Coupling to diffusion

To clucidate the effect of diffusion and heterogeneities, the entire system of Eqgs. (75)-(84)
is considered for the same geometry and problem formulation as in Section 7.1. The initial

width of Si film is hg = 250 nm, and diffusion and heterogeneities of x and all parameters are
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allowed along axis 3 only. The boundary conditions for diffusion Eq. (86) reduce to

Lithiation : J(ho,t) = jo(1 — x/xmaz); (88)

Delithiation :  j(ho,t) = —jo(x/Tmaz)

because the area does not change, and Jng-F~.ng = 1. The boundary condition for principal
stress is o3(ho,t) = 0. The schematic of thin film and boundary conditions are shown in
Li
ARAALARA]
24
Lithiation : j[ho,l)= jo[]-x/ xmax] P “ = %

1
Delithiation: j [h(),t)lj()[x / xmax] lesl Fi=F=0
03=0

Figure 2.6 Schematics of thin film and boundary conditions. The Li concentration is obtained
by solving the diffusion equation.

Fig.2.6. The variation of average lateral stress o vs. averaged Li concentration is presented
and compared with the homogeneous solution in Fig. 2.7. The slight difference in lateral stress
for the initial stage of lithiation between the homogeneous and heterogeneous solutions is
related to the heterogenous distribution of Li concentration at the beginning of diffusion.
The time evolution of distribution of Li concentration x and lateral stress ¢ are shown in
Fig.2.8. At the initial stage (100 s), the large concentration gradient at the surface causes
large and very heterogeneous compressive stresses. For ¢ = 1000 s, while concentration is still
heterogeneous, stresses are becoming more homogeneous due to increased compositional strain
and deviatoric stress relaxation—i.e., they slightly reduce near the surface and significantly
increase away from the surface. During further time evolution, concentration and stresses
become more homogeneous. For delithiation, heterogeneity in concentration and stresses are
barely visible. Around ¢ = 400 s, stress changes sign from compressive to tensile and then
grows. The concentration asymmetry between lithiation and delithiation (concentration at the
initial time steps for delithiation is more homogeneous than for lithiation) is associated with a

sub-regular solution [56]-Figure 2.9 exhibits the concentration field for ideal and sub-regular
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solution models for lithiation-delithiation.

To study the effect of the parameter (—which is partitioning the part of the compositional
stress power that dissipates and the part that contributes to the chemical potential-on the
concentration distribution, we increase the charging rate and initial thickness to C'/0.55 and
500 nm, respectively. Figure 2.10 shows that decreasing ¢ from 1 (no effect of deviatoric stress
on ) to 0 (maximum effect) increases the concentration of Li away from the external surface
for the intermediate stages of lithiation, and concentration becomes more homogeneous. For
t = 500 s, the concentration of Li at ¥y = 0 doubles when ¢ drops from 1 to 0. Thus, the
new term in the expression for the chemical potential exhibits an essential contribution to the

diffusion process for high deviatoric stress and compositional strain.

o, (GPa) o Lithiation (with diffusion)
3 Delithiation (with diffusion)
— Lithiation (without diffusion)
2 ) — = Delithiation (without diffusion)

1 NN g

2 '3 X
)

Figure 2.7 Variation of average lateral stress o vs. averaged Li concentration during lithiation
and delithiation of a thin film on a rigid substrate for heterogeneous problem
involving diffusion.

2.1.6.4 Solid spherical nanoparticle

One of the most common shapes of nanoanodes is a spherical nanoparticle. Stress gener-
ation under a small-deformation assumption, with spherical compositional strain and without
plasticity for solid and hollow spherical nanoparticles, can be found in [60] and [61]. The im-
portant difference in comparison with the thin film on a rigid substrate is that for homogeneous
Li concentration in a spherical particle internal stresses are zero. Here, we apply our model

with anisotropic transformation strain. An amorphous spherical particle with initial radius of
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Figure 2.9 Comparison of time evolution of Li concentration x for initial time steps with and
without excess energy for lithiation/delithiation of a thin film on a rigid substrate.

X/X,

max

t=1980s

7" .
7 t=10s  p t=1s

0.0 T T g T — T T T T T 1
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Figure 2.10 Effect of the parameter ¢, which is partitioning the part of the compositional
stress power that dissipates and the part that contributes to the chemical potential
on the Li concentration distribution in a thin film on a rigid substrate for the
charging rate C//0.55 and hg = 500 nm.
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Lithiation : j(ho,t)= jo[] -x/ xmaxJFg

Delithiation : j(ho,z):-jo(x/ xmax]ng

=0

Figure 2.11 Schematics of solid nanoparticle and boundary conditions. The surface is traction
free.

Ry = 200 nm is considered here using a spherically symmetric formulation. The outer surface is
traction free: o, (Ro,t) = 0. Boundary conditions are depicted in Fig. 2.11.  The deformation

gradient is

B
F=<F, FyFy>=<1+ 1+ 142>, (89)
or T r

where w is the radial displacement and r is the radius of a particle in the reference configuration.

The boundary conditions for diffusion Eq. (86) reduce to

Lithiation : j(ho,t) = jo(1 — &/Tmaee) F§ (90)

Delithiation : j(ho,t) = —jo(x/Tmaz) Fi,

where Jng-F~1tng = F92 is the ratio of the deformed to undeformed areas. The charging rate is
C'/0.55. The stress and concentration evolution are shown in Fig. 2.12. Generally, heterogeneity
of concentration is relatively low and magnitude of stresses in comparison with the film on a rigid
substrate is an order of the magnitude lower for lithiation and two orders of magnitude lower
for delithiation. Radial stress is initially tensile for lithiation and compressive for delithiation,
and the magnitude first grows then reduces with time and becomes compressive, ending with
a small compressive residual stress ~ —3 MPa for homogeneous concentration. Hoop stress is
compressive near the surface and tensile in the central region at the beginning of lithiation,
and it has the opposite sign for delithiation. The variation of hoop stress with time is similar
to that with radial stress (compressive stress first increases then becomes tensile and tends to
zero). This is also visible from the evolution of the hoop stress during lithiation and delithiation

at-the-center-and-surface.of a nanoparticle (Fig. 2.13), where the maximum of the magnitude
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is reached at the very beginning of each process. Similar behavior was observed with regard
to plasticity by [6]. The positive hoop stress at the external surface increases the probability
of crack appearance at the outer surface of NPs, which was observed in experiments by [14].
However, the traditional isotropic compositional strain excluding plasticity cannot predict the
crack growth from the external surface [61]. This small tensile hoop stress suggests that the
critical radius of the amorphous solid NP is large, which is in agreement with experimental

studies [25].

2.1.6.5 Hollow nanoparticle

Similar problems are solved for hollow spherical nanoparticles with different initial external
and internal radii-R, = 208, 252, 327 nm, R; = 100, 200, 300 nm—with the same volume as a
200 nm solid nanoparticle. In addition to the boundary conditions for the outer surface, the
internal surface is traction-free and has zero diffusion flux (Fig. 2.14). The evolutions of Li con-
centration and stresses are shown in Fig. 2.15 for a C//0.55 charging rate. The evolution of the
hoop stress during lithiation and delithiation at the inner and outer surfaces of a nanoparticle
is demonstrated in Fig.2.16. In comparison with a solid nanoparticle, radial stress is reduced,
and its maximum is shifted to the interior of the particle. Hoop stress is initially tensile at the
inner surface and compressive at the outer surface, but it becomes gradually tensile at the ex-
ternal surface and then goes to zero during lithiation. Figure 2.16 shows the variation of hoop
stress at the outer surface for different hollow NPs with and without relaxation. Generally
speaking, the stress level in hollow NPs is smaller than for NPs with the same volume, and it
decreases by increasing the internal radius because the thickness of hollow NPs is reduced, and
the Li concentration becomes more homogeneous. Additionally, the relaxation does not affect

the stress level of large hollow NPs due to the small induced stresses.

2.2 Concluding remarks

This paper presents, several conceptual developments in the thermodynamics and kinetics of

compeositional-expansion/contraction, the corresponding stress generation and relaxation, and
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Figure 2.12 Concentration (a and d), radial (b and e), and hoop (c and f) stress evolution for
lithiation (a-c) and delithiation (d-f) of a solid spherical nanoparticle.
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Figure 2.13 Hoop stress for the surface and the center of a solid nanoparticle during lithiation
(a) and delithiation (b).

Lithiation : j(h(),t]=j0[l-x/xmax)F92

Delithiation : j(ho,t]:jo(x/ xmax]Fg R,(¢ u

o-=0

Figure 2.14 Schematic of a hollow nanoparticle and its boundary conditions. All surfaces are
traction free.
the stress-induced diffusion and corresponding chemical potential. The developed theory is fully
geometrically nonlinear, and it is applied to an important problem of lithiation/delithiation of
a nanoscale amorphous S¢ anode in an Li-ion battery. The main idea is that, despite the
material isotropy of amorphous material, deviatoric stresses cause anisotropic (tensorial) com-
positional expansion/contraction during exertion/extraction of the guest atoms. This leads to
an additional contribution of the power of the deviatoric stresses and the deviatoric part of the
compositional deformation rate to the dissipative inequality. Usually, the dissipation rate is
considered to be independent of the rate of concentration change, which leads to the definition
of the chemical potential. Since with the presence of the power of the deviatoric compositional
deformation rate this is not necessarily the case, the dissipation rate due to compositional
expansion/contraction is introduced as a portion of the power of the deviatoric compositional
deformation rate. In this case, the remaining portion of the deviatoric compositional defor-
mation rate is dissipation-free and produces a contribution to the definition of the chemical

potentialAdapting;and.applying a previously formulated postulate of realizability, a simple
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Figure 2.16 Hoop stress for the outer surface and the inner surface of a hollow nanoparticle
during lithiation (a) and delithiation (b).
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Figure 2.17 Hoop stress for the outer surface of different hollow nanoparticles during lithiation
with and without relaxation.
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kinetic equation for the deviatoric part of the compositional deformation rate was derived.
The postulate of realizability was applied to two different problems, namely (1) to defining the
contribution of deviatoric stresses S to the chemical potential, and to (2) determination of the
compositional dissipation rate. Both results coincide and lead to coincidence of the direction
tensors of the deviatoric part of the compositional deformation df rate and stress S. With a
series of simplifications, the simplest kinetic relationship between df and S contains just one
constant, which was determined for lithiation of S% by fitting one of the points of the stress-
lithium concentration x curve obtained experimentally or by first-principle simulations. After
this, a quantitative correspondence between the predicted evolution of the biaxial stresses o(x)
during lithiation-delithiation of Li,S% on a rigid substrate for 0 < x < 2 and those obtained
experimentally and by atomistic simulations [20] was obtained. For comparison, a model in [5]
based on viscoplastic flow requires two material parameters and the yield strength as a function
of = to be fitted to experiments, but agreement with the same experiment for o(z) is not as
good as that presented in the current paper. One of the important points is that elastic energy
is defined in the unloaded (rather than reference) configuration, in which the elasticity rule is
determined experimentally or in atomistic simulations. Otherwise, a large error in the elasticity
rule will be introduced because of large volumetric compositional strain. This also leads to an
extra term in the chemical potential.

An additional contribution to the chemical potential due to deviatoric stresses leads to an
increase in the driving force for both compositional expansion and contraction and to some
new phenomena. To chose which process (extraction or insertion) will occur at small driving
forces, we assumed that the actual process minimizes the chemical potential. This leads to
the jump in a flux, which can be used to check our prediction. The lack of the threshold for
the stress relaxation (in contrast to plasticity in [5] and [6] or reactive flow in [20] and [19])
allowed us to suggest a simple method for reduction in internal stresses by cyclic change in
Li concentration with a small amplitude. Our simulations are in qualitative agreement with
available experiments [33]. The coupled problem formulation for diffusion, insertion/extraction,
and mechanics is applied to lithiation and delithiation of thin film on a rigid substrate, solid, and

hollow spherical nanoparticles. The effect of various parameters, including the contribution of
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the deviatoric stress on the diffusion, stress relaxation, and geometric constraints, is elucidated.

Plastic flow is included in the current general theory, and different kinematic decomposi-
tions are considered. It is shown that an additive decomposition of compositional and plastic
deformation rates has an advantage in comparison with multiplicative decomposition of the
deformation gradient. Namely, each of these two processes can be described independently of
each other, which is impossible with multiplicative decomposition.

The accuracy of the determination of stresses and their relaxation is important for evalua-
tion of the fracture of anodes; see [10-13], and [14]. A similar approach can be developed for
crystalline Si. In this case, initial anisotropy, chemical reaction, and multiple phase transfor-
mations should be taken into account. Indeed, during lithiation of the crystalline S% various
compounds, such as LiSi, Li1oSi7, Li13Sis, Li155i4, LigoSis, and pure Li, have different crys-
talline lattices [39]. Thus, initially lithiation is an insertion and compositional expansion, when
Li atoms represent interstitials in the fcc lattice of Si. When x reaches unity, a chemical
reaction occurs with formation of a tetragonal lattice. Thus, the concentration of interstitial
Li jumps to zero, and the thermodynamic treatment should be built on a solid state-reaction
rather than on compositional expansion. Further increase in x takes place as an insertion,
until = 12/7, when the next reaction occurs, leading to an orthorhombic lattice. We cannot
exclude the fact that similar reactions do not occur in the amorphous Si—.e., that the pro-
cess occurs as sequential insertion and reaction—which requires more general thermodynamic
description. Note that the above reactions in the crystalline Si occur if amorphization is sup-
pressed. Usually, amorphization occurs at z = 0.2 [62-65] and is modeled as a reaction at
the sharp interface [66]. Both for the lithiation reaction and amorphization, the anisotropic,
stress-induced deviatoric compositional deformation rate can be introduced in a way similar to

what we have done here.
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CHAPTER 3. MECHANOCHEMICAL CONTINUUM MODELING OF
NANOVOID NUCLEATION AND GROWTH IN REACTING
NANOPARTICLES

Modified from a paper published in the Journal of Physical Chemistry C

Valery I. Levitas' and Hamed Attariani 2

ABSTRACT

Hollow nanoparticles (NPs) are produced by void nucleation and growth during chemical
reactions. However, there is no proper understanding of nucleation and growth mechanisms
and their predictive modeling. Models based on the Kirkendall effect predict the process time,
which is larger by orders of magnitude than in the experiment. This is why some works propose
that a large tensile pressure in the core causes void nucleation. Here, a continuum-mechanics
approach for nucleation and growth of a nanovoid in reacting NPs based on the Kirkendall effect
is developed. In contrast to previous approaches, void nucleation and the effects of stresses are
treated explicitly. The void nucleation condition vs. pressure, temperature, sizes of a vacancy,
core material, and the initial reaction product layer is determined and a strong multifaceted
effect of mechanics is revealed. Thus, with mechanics, a cluster consisting of four vacancies rep-
resents the supercritical nucleus. Surprisingly, the core is under compression (which eliminates
fracture hypothesis), and compressive pressure and reduced temperature promote void nucle-
ation by decreasing equilibrium concentration of vacancies at the void surface. However, they

suppress void growth by reducing diffusion coefficients. Our model quantitatively describes

Towa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Material Science
and Engineering, Ames, Iowa 50011, U.S.A.
2Jowa State University, Department of Aerospace Engineering, Ames, Iowa 50011, U.S.A.

www.manaraa.com



58

the experimental results for oxidation of copper NPs. A thermomechanical loading program is

suggested to accelerate and control void nucleation and growth.

3.1 Introduction

Hollow NPs have diverse functionality due to their specific optical, electrical, magnetic,
and other properties. They have low density, high specific surface area, and the ability to
encompass another material in their internal volume. These characteristics make them an
outstanding candidate in biomedical applications (drug delivery, disease diagnosis, and cancer
therapy), lightweight filters, composites, catalysts, waste treatment, insulators, and photoelec-
tric devices. [1,2] The hollow in nanoparticles can be used to control their energetic behavior
during combustion. [3] Understanding the mechanisms and parameters, that affect the hollow
formation is a key issue for researchers. After the first synthesis of hollow nanoparticles [4]
based on the Kirkendall effect, experimental studies have been done on void formation in Cu,
Al, Fe, Zn, Co, and Cd NPs. [5-11] In, [4-9] the bare NP was exposed to the air to cause
oxidation; hollow sulfides were formed in [10,11]. Since diffusion of core material to oxide shell
is faster than diffusion of oxide into metal core (the Kirkendall effect [12]), vacancy flux to the
core leads to oversaturated vacancy state and nanovoid nucleation. While atomistic studies
for model binary metals reproduce nucleation and growth of void, [13,14] due to known lim-
itation on size and time scales void nucleation was obtained near melting temperature only,
while in experiments it occurs near room temperature. With the continuum approach, diffu-
sional growth of nanovoid in a binary alloy without reaction was studied for cylinder [15] and a
spherical particle. [16,17] In all continuum approaches, nucleation of void was not considered,
and mechanics was neglected. Because calculated growth time was larger by several orders of
magnitude than in experiments, [17] the ability to explain void formation by the Kirkendall
effect was doubted. It is proposed in [17] that tensile pressure in the core is developed due
to misfit strain between metal and oxide and that causes void nucleation. In, [18] nucleation
of the nanovoid caused by tensile stresses due to misfit strain was considered without diffu-
sion. However, Refs. [17, 18] neglect surface tension and stresses, that in fact produce large

compressive-pressure-di-a-core (see below). Void nucleation in elatoplastic material under ten-
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sile stresses due to sublimation, sublimation via virtual melting, and fracture are considered
in. [19-21] In phase-field approaches, [22,23] void nucleation occurs via spinodal decomposition
for a very large concentration of vacancies or due to cavitation; [24] the results [19-24] are not
applicable for our case. Thus, the mechanism of void nucleation and growth is currently not
clear. In the paper, we developed a simple continuum approach for nucleation and growth of
nanoviod in reacted NP that includes consideration of coupled core material reaction, diffusion
of vacancies, diffusion of core material in reaction product shell, stress generation, and moving
void and external surfaces. While equations are formulated for the general 3-D case, to obtain
a simple and tractable solution, we consider a spherically symmetric problem. It is assumed
that an g-vacancy cluster is formed at the center of a particle, which is considered as a void
embryo. Concentration of vacancies at the void is equal to the thermodynamic equilibrium
value ne4, which depends on temperature, local pressure, surface energy, and void radius. The
void will grow (i.e., it represents a supercritical nucleus), when the concentration of vacancies
in the core n, > ney, that provides vacancies fluxes toward the void. Thus, the void nucleation
condition vs. external pressure p., temperature 6, and the radii of vacancy r,, core material
R., and reaction product shell R is determined. It is found that the core is under significant
compressive pressure due to surface tension, which according to general wisdom, should sup-
press void nucleation and growth. However, a nontrivial point of our results is that compressive
pressure promotes void nucleation by essentially decreasing n, at the void surface. Thus, with
mechanics, a cluster consisting of ¢ = 4 vacancies represents a supercritical nucleus. Similarly,
temperature decrease promotes nucleation. However, both pressure increase and temperature
decrease suppress void growth by reducing diffusion coefficients. Our model described well
experimental results [5] for oxidation of Cu NPs of four sizes at three temperatures. Paramet-
ric study determined conditions for promoting void formation in particles of different sizes by

controlling pressure, temperature, and internal stresses.

3.1.1 Governing equations

Since we apply our model to metal oxidation, we will henceforth call core a metal and shell

an oxide. While often multiple voids nucleate near the core/shell interface, [8,25] we placed the
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void at the center, similar to all previous works. Three different stages will be considered: (1)
before void nucleation, (2) with all three regions, and (3) after the metal core has disappeared
(Fig. 3.1). According to experiments, [5] it is assumed that oxide and oxygen do not diffuse
into metal and that R. = const. Also, oxidation reaction xM + 0.5yO2 = M, O, occurs at the

external surface only. Below, subscripts ¢ = 1 and i = 2 are referred to metallic atoms in

(1 3)

Figure 3.1 Particle geometry: (1) before void nucleation, (2) with all three regions, (3) after
metal core disappeared.

the core and shell, respectively. Subscript s means symmetrization of a tensor; - and : mean
contraction and double contraction of tensors or vectors, which are designated by bold-face
letters; V and V? are the gradient and Laplacian operators; I is the unit second-rank tensor.

Two diffusion equations are needed to model the diffusion of atoms in the shell and core.
Furthermore, the void and outer surface of the NPs grow due to the vacancy annihilation and
chemical reaction, respectively. The growth velocities of these surfaces are obtained by the
conservation of mass. In this section, the coupled mechanical and diffusion equations as well
as equations for growth velocities are derived. While there is significant change in shape due
to mass transport, strains are considered to be small, which is confirmed by calculations. For
simplicity, the temperature is assumed to be constant during the modeling. Due to smallness
of the strains, there is no need to distinguish between undeformed (reference) and deformed
(actual) volumes. The interstitial and substitutional diffusion equations can be found, e.g.,
in. [26-28] We added explicit pressure dependency of the diffusion coefficients and actual va-

cancy concentration dependence of the self-diffusion coefficient to the classic equations.
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3.1.1.1 Diffusion in the core

The description of self-diffusion of atoms in a core requires consideration of two components,
vacancy and metallic atoms.
Flux. In the framework of linear thermodynamics, one can derive the proportionality relation
between the diffusive flux j and its conjugative driving force, gradient of chemical potential:

[29-31]

o

- oo 0
)= _Clblvﬂ; =1 — py = 8_ 7/’
C1

B Jdey

(1)

€0 5,197
where p1 and p, are the chemical potentials of metallic atoms and vacancies, 1 is the free
energy per unit volume, ¢; and ¢, are the molar concentrations (i.e. number of moles per unit
volume) of metallic atoms and vacancies, and b; is the atomic mobility. Derivatives in Eq. (1)
are evaluated at fixed strain tensor € and temperature 6. While it is convenient to perform
some derivations using ¢; and ¢,, the final results are more tractable in terms of n; and n,,
the molar fractions (i.e. number of moles of a specie per total number of moles) of the metallic
atoms and vacancies in the core. They are related by n1 = ¢1/¢; ny, = ¢y/c; ¢ = 1 + ¢;
ny, = 1 —ny. [29] By definition, the molar volume of a metal with vacancies is V' = 1/c. [29]
Due to small concentration of vacancies and corresponding small change in volume due to
vacancies, the molar volume of metal V,,, ~ V; due to small elastic and thermal strains we

assume that these molar volumes are constant. Thus, n1 = V,,¢1 and n, = V,,¢p. Therefore,

Eq. (1) can be rewritten

, b1 — _

m

in terms of the flux J; and the molar fraction. Such a definition of the flux can be found, for

example, in. [26] The free energy per unit volume for a stressed ideal solution is [32]

P(c1,0,6) = Y (e) +1p%(cy, 0); (3)

wd(cl,ﬁ) = clu(l)—l—cvu2+R9 ciln a

+ ¢yln
1+ ¢y 1+ ¢y

Ypmech = 0.5e,: E : e,
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where R is the gas constant, u{ and u are the standard chemical potentials of metallic atoms
and vacancies, E is the elastic moduli tensor, )¢ and ¢"™¢" are the free energies of an ideal
solution and strain energy per unit volume, and & is the elastic strain tensor. The total strain

tensor is decomposed to the diffusional 4, thermal €9 and elastic parts
E=€.+€ei+€0; €4=uw,(cy — &N I/3; gg = an AT, (4)

where « is the linear thermal expansion coefficient of a core; A = 0 — 6,.,0, = 300 K is the
/. . . . . . . .

room temperature; w, is the volumetric diffusion expansion coeflicient of vacancies in the metal;

cz% is the equilibrium molar concentration of vacancies at the initial pressure and simulation

temperature. According to the definition of the chemical potential Eq. (1),

d mech d mech
oy oy :[ai+a¢ ]_[a@z; L ] )
€ €

#= der | Jdey Ocy ole] dey, Oey
After substitution of Eq. (3) in Eq. (5), the chemical potential can be written as

53 5

L= — + : : =1y — py + ROIn — — w,p. 6
: [861 ey | Oe. | Oeq Oc,| T n, ©)
We took into account that o = a%n;zm is the stress tensor, gg; is the negative forth-rank unit
tensor, @g : g—g; : ‘2%1 =—0: Iw;/3 = pw;, where p = —0¢ : I/3 is the pressure.
€

The diffusional strain can be rewritten as €, = wy(1 — ny — nid)I/3 with the volumetric
expansion coefficient w, = w;, Vi, iy = Vipey = (1 = nq), nid for the equilibrium molar
fraction of vacancies at the initial pressure and simulation temperature.Then, the chemical

potential is [26]

pw=pl —pud+ ROIn Mmoo V mwop- (7)
1— ny
Substituting Eq. (7) in Eq. (2), we obtain
ROV —
J1 = —b1n1Vﬁ = —b1n1 m — vamVp . (8)
NNy

Next, we elaborate on the equation for the atomic mobility for the substitutional diffusion in

the non-equilibrium state

Dy Dyn, 1 Di'n,

0L 0:2: 1) = 16 = "R T RE g

(9)
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Here D = DY exp(—Ef}pe—M) = Dyneq is the self-diffusion coefficient at the equilibrium con-

centration of vacancies 7.q, DY, B¢, AV; are the pre-exponent factor, activation energy, and
activation volume of diffusion in the core, respectively, and D, is the diffusion coefficient of va-
cancies. Therefore, the mobility depends on pressure, temperature, and vacancy concentration.
After substitution of Eq. (9) into Eq. (8), the flux is rewritten as

_ oy

Negq

nl(l — nl)wvvm V

Jq l—an + 70 p} . (10)

Equilibrium concentration of vacancy. The equilibrium concentration of vacancies is [33]

G H} —0S]
Neq = exp | — g | =exp | —— 75— |, (11)

where H{; , S{; , and G{: are the enthalpy, entropy, and Gibbs energy of vacancy formation. At

the interface with a curvature 1/r, the Gibbs energy is changed by

2y Vy
1" )

AGeT = (12)

where v is the surface energy, Vy = (1 — f)€2; is the formation volume of a vacancy, €1; is the
atomic volume of metal, and f is the vacancy relaxation factor. Taking into account Eq. (12)
and Hf = E/ +pVy, where E/ is the formation energy of vacancy, the equilibrium concentration

of vacancies can be written as

_ Ef —08] Vs 29V
Neqg = €XP <_T> exp (_ﬁ> exp (W) . (13)
For the bulk, the effect of surface energy (curvature) and the last exponent in Eq. (13) disap-
pears:
_ Ef — 0] Yy
Neq = €XP (_T exp <_ﬁ) . (14)

Mass balance. The mass balance equation for diffusing species is 11 + V'V - j; = 0 [32,34] and

with V' ~ V,,, and Eq. (2), we obtain [26]
n+V-J =0 (15)

Substituting Eq. (10) in Eq. (15), the diffusion equation is obtained

D{? DY? 1- 1% DY?
=V ( L ) Ty + 2Ly, - Lmm)menVn g ( L ) Vp (16)
neq neq RH neq
B DSY(1 — 2n1)w, Vi Vna Vp B D%y (1 = ny)w, Vi V2
neqRe neqRH '

www.manaraa.com



64

Since VZ—S: = —l;enAV Vp, with AV = AV} — V. the diffusion equation can be rewritten as
eq o 17 I7 2
hy = Dy V2o, 4+ (1 ”1)n1va?AV(Vp) (17)
Theq (RO)
B [(1—2n1)wV, + AV]Vn Vp B n1(1 — n1)Vpw,V3p
RO RO

3.1.1.2 Diffusion in the shell

In the shell, the metallic atoms are diffusing species and oxide atoms act as a matrix. For

interstitial diffusion, the flux is defined in the same way as in Eq. (2)

0
Jo = —ngboVipo 5 po = 8¢ (18)
C2lg, 0
where the subscript 2 is for metal atoms in the shell. The atomic mobility is
D2 0 E5 + PAV2>
The free energy per unit volume for a stressed ideal solution is similar to Eq. (3):
V(2. 0,8) = "M (e) + ¢(ca, 0); (20)
d 0 0
0) = RO |col In ;
(2, 0) Cafig + Cppty + [62 an + + enln == ch}

Q/)mCCh = 0.5, : E: Ee;

where 9 and u?l are standard chemical potentials of diffusing and matrix atoms and ¢ and
cp, are the molar concentrations of diffusing and matrix atoms. The chemical potential can be

calculated similarly to the substitutional diffusion: [26, 28]
o = ug + ROInng + waVp, (21)

where V is the molar volume of a matrix (oxide).
Fluz. Combining Egs. (18), (19), and (21), the flux of diffusing atoms in the shell can be

expressed as

nawy VsV
Jo = —Ds lvm + %;p] . (22)
Mass balance. The mass balance equation for metal atoms in a shell is
no+V-Jy=0. (23)
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Substituting Eq. (22) in Eq. (23), we obtain the diffusion equation:

1, - WV snaV2p  waAVaV yny(Vp)?
. 2 1 _ 2VsMaV'p  wanaVaV sna VP
ng = Dy |V*ngy + (wgvs AVg)VnQVp + RO (R0)2

70 (24)

3.1.1.3 Mass balance for the outer surface

When the metal atoms reach the outer surface and react with the oxygen, it is assumed
that the reaction rate is infinite, i.e., all metallic atoms that reach the outer surface react with
oxygen instantaneously and form the oxide layer on the outer surface. If metallic atoms will
deposit on the external surface without reaction, then the outer boundary velocity v = J,. For
a general oxidation reaction, xM +0.5yO2 = M, O,, instead of the volume of z moles of metal,

xV ,, one obtains volume of one mole of oxide, V. Thus,

e (25)
zVm

2.4. Mass balance for the void interface

The velocity of void interface is
d:(J:—J;)/(nj—n;), (26)

where superscript — denotes a core and + indicates a void. The vacancy concentration in the
void region n;” = 1 and near the void surface n, = ne, according to boundary conditions;
additionally, J,©- = 0. In the core, the metallic atoms exchange their positions with vacancies.

Therefore, the flux of vacancies is equal to the negative flux of metallic atoms:

- _ _ 7, — _Diq _ (1- nl)nlwv‘_/m
= h=—k [ Vi, + Luingy!. (27)

Also, the unit normal vector on the void surface in negative. Substituting Eq. (27) in Eq. (26),

one obtains the velocity of the void growth

. Di? (1 —n1)n1w, Vi,
=71 |- . 28
a o R l Vng + 70 Vp (28)
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3.1.2 Complete coupled system of equations

Below we will collect only those equations that are used in numerical simulations.

Diffusion of metallic atoms in the core:

eq - Eva 17 2
P l)1 V2n1 n (1 nl)nleV;nAV(Vp) (29)
Neq (RH)
B [(1—2n1)wVy, + AV]Vn Vp _ n1(1 — n1)Vpw,V2p
RO RO ’
Diffusion of metallic atoms in the shell:
. 1, — wVenaV2p  waAVaVeno(Vp)?
= Dy |V? — s— A - -
no 2 [V no + R0 (WQV VQ)V?%QVP—J- RO (R9)2 ; (30)

D; = Djexp(—(E*+ AVip)/RO), i=1,2.
Equilibrium concentration of vacancies in a bulk:
Neqg = €XP (—%) exp <—%) . (31)
Strain-displacement relationship and strain decomposition.:
e=(Vu),, e =€, +ep+eq 9= ;A0 ) = w,(1—ny —ni)I/3, €3 = wanoI /3. (32)
Hooke’s law, pressure, and equilibrium equation:
o = E:¢; p=—0o:1/3; V.o=0. (33)

The coupled system of Eqgs. (29)-(33) is solved numerically for the three different stages in
our problem: (1) before void nucleation, (2) with all three regions, and (3) after the metal core
has disappeared (Fig. 3.1). The following boundary conditions are applied in each stage:

1) Before void nucleation

at r = 0: J1=0 u=0; (34)
at r = R.=const: u; = us; U;—03=—2703/RC; Ji=Jo; no < nmax;

at v = Ry: 02=—=2v/Rs+pe; no=0; Ry=—JV,/zV,.
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2) With all three regions

Ef — 0587 v, 27V,

RO RO rRO
oy = _2')’(1/0‘3 a= _Jl/(1 - neq); (35)

at r = R.=-const: w3 = ug; 0} — 03 = —27s/Re;  J1=1J2;  n2 < nmax;
at r = Rg: 0‘? = —27vs/Rs + pe; 2 =0; R, = —Jo Vi )2V,
3) After metal core disappeared
at v = Re=const: J=0; o0,=-27/q (36)
at 7 = Re: 02=—=2v/Rs+pe; no=0; Ry=—JV,/zV,,.

For all cases, the fluxed are:

_ Diq (1- nl)nlwvvm . B nZWZVsz
S = n_eq —Vn; + RO Vp i Jo=—Dy |Vno + T . (37)

Here, nqe is maximum solubility of metal in oxide. Egs. (34)-(36) contain continuity
of displacements and fluxes of metal atoms, as well as jump conditions for radial stresses o.
Condition no = 0 at » = R, is the consequence of the assumption on infinite reaction rate.
Indeed, as soon as metal atoms appear at the external surface, they are consumed by reaction.
Condition (35) for the vacancy concentration n, means that at the void surface it is always
equal to neg, similar to. [15] In addition to the dependence of n., on temperature and surface,

we took into account the effect of pressure p, which, as was shown, is very important.

Initial conditions
As an initial state, we consider a core-shell system without a void at a chosen tempera-
ture 6, that produces initial stresses ' (in particular, pressure p'™) due to different thermal

expansion coefficients of the core and shell. In addition:
_E{; —sl0 _pr’i”
Core l—ny=n,=nd = RO e RO . (38)

Shell no = 0.

Note that pi" can be calculated analytically using Eq. (40). For example, p{* = 0.716 G Pa for

e solution from the previous stage is used as the initial condition

www.manharaa.com




68

for the next stage.

4. Materials Parameters
We use in the calculations the following material parameters for Cu/CueO nanoparticles:

0~22m3/atom and vacancy

radii of vacancy, r, = 0.199 nm; atomic volume of Cu, {2 = 1.18 x 1
relaxation factor, f = 0.3, i.e. V; = 0.7Q m?/atom; [35] Cu elastic shear G; = 22.5GPa
and bulk K; = 143.33 GPa moduli; [36] Cuz0 elastic shear Go = 8 GPa and bulk Ky =
111.33 GPa moduli; [37] Cu linear thermal expansion coefficient, a3 = 1.72 x 1072 1/°C; [38]
Cus0 linear thermal expansion coefficient, as = 1.05 x 10°91/°C; [39] Cu molar volume,
Vi = 7.1 x 1079 m?3/mole; CusO molar volume, Vg = 23.31 x 1075 m3/mole; [5] volumetric
diffusion expansion coefficient of vacancy in Cu, w, = —0.3; [35] volumetric diffusion expansion
coefficient of Cu in CusO, wy = 0.256; [40] pre-exponent factor for self-diffusion coefficient of Cu,
D} = 7.8 x 1075 m?/s; activation energy for Cu self-diffusion coefficient, E¢ = 211.3 K J/mol;
[41] surface energy of Cu, v, = 1.79 J/m? [42] (due to the lack of experimental data, we assumed
that the surface energy of core/shell interface, 7.5, and Cug0 surface, s, are equal to the Cu
surface energy 7,), activation volume of self-diffusion coefficient, AVy = 0.6Q; m3/atom [30]
(due to lack of data, we assumed that the AV, = AV}); energy of vacancy formation of Cu,
EJ =103.24 K J/mole; and entropy of vacancy formation of Cu, s/ = 1.46 x 107> R. [43]

The diffusion coefficient of Cu in CusO at the nanoscale, Dy, and maximum solubility of
Cu in Cug0 could not be found in the literature. At the macro scale, Dy is of the order of
1024 m?/s [44] at 0 = 373 K; however, it is expected to be much larger at the nanoscale.
To justify this, we analyze available data for diffusion of Al in aluminum oxide. Thus, for
bulk material the diffusion coefficient of Al in a-alumina at 800-950 °C' is D = 10~ ¥cm?/s.
[45] Data collected in [7] show the same order of magnitude but for 1200 °C. In molecular
dynamics simulations, the diffusivity of aluminum [46] has an extremely high order of magnitude
of 107*cm?/s at 400 K. In, [47] the diffusion coefficient of Al in various types of alumina
(amorphous and crystalline) has been determined for particle radii from 2.8 to 4 nm and oxide
shell from 1 to 2 nm using molecular dynamics. For 1000 K, the value of D ~ 4 -10%cm?/s

has been obtained. In [48] D ~ 4 -10"%cm?/s at 873 K was obtained to fit oxidation time
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of a nanoparticle to experimental value of 1 s. Independent of significant scatter, the drastic
increase in diffusion coefficient for nanoscale particles and shell is clearly visible.

Thus, these parameters, Do and npax, will be found by fitting experiments. First, we
found D(373 K) = 1078 m?2/s and ne: = 0.009, which give the good consistency with the
experiment data on the oxide thickness § = Rs— R vs. time t for the particle with R. = 9.05 nm
at § = 373 K. Second, keeping nq., the diffusion coefficient Ds of Cu in CusO was varied to
fit experimental data for a particle with R, = 4.26 nm at § = 323 K. With these two fitted

diffusion coefficients, one can extract DY = 4.017 x 10712 m?/s and ES = 47.156 K .J/mol.

3.1.3 Void Nucleation Criterion

At the moving void surface of the radius a, we put that the vacancy concentration n, is
always equal to its equilibrium value n.q, similar to. [15] In addition to the dependence of ngq
on the temperature 6 and surface energy «y in, [15] we took into account the effect of pressure
p(a) at the void surface Eq. (35), which, as will be shown below, is very important. We will
define supercritical void as the void that can grow; i.e., when ne, at its surface is smaller than
n in the surrounding. Then vacancy flux will be directed toward the void and cause its growth.
The radius of the void, which represents the g-vacancy cluster, is determined by a = r,q/3.
This approximation shows good correspondence with data in [35] for stable 3- and 4-vacancy
clusters in Cu. Plots of equilibrium concentration of vacancy n., (Eq. (35)) at the surface
of the void consisting of ¢ vacancies vs. temperature for several values of ¢ and pressures are
shown in Fig. 3.2. The smaller value n, has the larger probability of void nucleation, because
it is easier to reach and exceed this value in the surrounding of a void. The main counterintu-
itive conclusion coming from Fig. 3.2 is that compressive pressure promotes supercritical void
nucleation. Indeed, general wisdom is that pressure suppresses void formation. However, in
our case, pressure, reducing n., at the void surface, promotes transport of vacancies toward
the void, causing void growth. Note that the promoting effect of pressure on void nucleation,
based on a completely different consideration, was found in. [49] It follows from Eq. (35) that
at § = 323 K and p = 0.716 GPa (which corresponds, e.g., to free particle with R. = 9.05nm

and R, = 11.55nm), allowing for pressure reduces n., by a factor of 3.8. Also, temperature
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suppresses supercritical void nucleation.
Below, we connect the external pressure p. and pressure at the void surface, assuming homo-
geneous distribution of n; and ny. First, elastic solution for hollow sphere [50] results in the

following pressure distribution in the core:
p(r) = (=2mW?°/a -0 (R.))/(1-W?), W =a/R., (39)

where o} is the radial stresses in core. For nucleation W < 1 and one obtains p(a) = —c}(R.),
which is independent of surface tension at the void surface. Thus, a very small void, while
changing all stresses, does not change pressure in a core and keeps the pressure in a core
homogeneous. To connect external pressure p. with pressure in a core, we can use the equation

for a solid core/shell system. [3]

. 12(m3 — 1)A€inG2K1K2 n 2K, (4G2 + 3m3K2)’y1 n (2’}/2 —l—peRsm)’I’l’I?Kl(ﬁlGQ + 3K2)
b= 7] R, H R, H

,(40)
where m = R/ R,

. 1
Ae™ = (ag — a1)A0 + 5[&)277,2 —wi(ny —neg)], H= 3K Kom?® + 4G (K + (m3 —1)K>),(41)

K; and Gj are the bulk and shear elastic constants. Eq. (40) allows one to predict the effect of
various particle parameters, external pressure, and temperature on pressure in core for small
void size (in particular, during nucleation), and consequently, on the nucleation condition.
Thus, external pressure essentially increases p, but this increase reduces with m;n; and no
decrease p, and this decrease grows with m; also, temperature rise slightly increases pressure,
and this rise grows with m. Increase in particle size reduces pressure contribution due to surface
tension, which is the only pressure source for p, = 0.

Here certain criteria are explained thus eventually leading to a foregone conclusion.

3.1.4 Numerical Method

The finite element-method code COMSOL Multiphysics was utilized to iteratively solve
the coupled system of equations (29)-(33) for each time step. Displacement and concentration

fields have been considered as primary variables. Solutions of equations of elasticity theory for
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Figure 3.2 Equilibrium concentration of vacancies (Eq.(35)) at the surface of void consisting
of ¢ vacancies vs. temperature for different external pressures at the void surface:

(a) p(a) =2 GPa, (b) p(a) =0.716 GPa, and (c) p(a) = 0.
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given n; and ngy distributions have been obtained using the Structural Mechanics module of
COMSOL at each time step. After finding nodal displacements, strains and stresses (including
pressure) can be found using Eqs. (32) and (33). The pressure field was used for solutions of
diffusion Eqgs. (29)-(31) for the same time step in the main module of COMSOL Multiphysics.
After obtaining increments of a and R by integrating Eq. (35), the geometry was updated
using the Arbitrary Lagrangian-Eulerian (ALE) technique. Quintic Lagrangian elements are
used for both the mechanical and diffusion equations. The total number of integration points
was 1290, and the time step varied from 0.001 s to 0.15 s in different stages.

Note that all of the main types of pressure distributions for each of the three stages were
compared with the developed analytical solution and that the results are in very good cor-
respondence. Our analytical solution generalizes this in [51] for the case with the prescribed

heterogeneous n; and no distributions, which was taken from numerical simulations.

3.1.5 Void and Oxide Growth
3.1.5.1 Oxide growth

We simulated the oxidation and hollow formation and growth for three temperatures (323,
343, and 373 K) and four NP core radii (4.26 nm, 9.05 nm, 11.5 nm, and 15.9 nm) with initial
shell thickness of 2.5 nm. [5] For R. = 9.05nm at § = 373 K, when n, at the center reaches
neg = 0.0154, a 4-vacancy nanovoid is introduced at the center of NP. Comparison of the
results of numerical simulation for the oxide layer thickness hs vs. time for Cu particles of four
different sizes with experiments in Fig. 3.3 shows very good consistency; one has to keep in
mind significant scatter in particle sizes and shell thicknesses in experiments. Note that the
final oxide thickness is determined by the mass balance, which is satisfied in our simulations.
Thus, discrepancy with experiment in final oxide thickness is related to an error of presentation

of experimental results.
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3.1.5.2 Pressure and vacancy distribution for solid core/shell structure

Distributions of concentration of vacancies in a solid core and Cu atoms in a shell are pre-

sented in Fig. 3.4 for R, = 9.05 nm at § = 373 K. Since Cu atoms diffuse to the shell and react
with oxygen, vacancies are generated at the core/shell interface and diffuse to the core center.
Both distributions increase in time until 16.5 s, and n, at the center reaches n.y = 0.0154 which
is determined by Eq. (35).
The pressure distribution in core is slightly heterogeneous due to heterogeneous vacancy dis-
tribution and reduces from 0.71 to 0.68 GPa during 16.5 s due to increasing n,. The pressure
distribution in the shell is also slightly heterogeneous, and its maximum increases from 0.325
to 0.345 GPa due to increasing ns.

Pressure and vacancy distribution for void growth stage. After n, at the center reaches
Neg = 0.0154, a 4-vacancy nanovoid is introduced at the center of NP. The results are presented
in Fig. 3.5. With increasing time, vacancies are absorbed by the growing void, and the core
becomes smaller until all Cu atoms diffuse to the growing shell. Initially, the sharp reduction
in n, causes fast void growth, which decelerates with time (Fig. 3.6). Initial fast growth is
caused by the strong reduction in equilibrium concentration of vacancies at the void surface
with increasing void radius and by the small initial void size. The pressure is becoming more
homogeneous in the core with increasing time and increases from the initial 0.716 GPa to 1.9
GPa at 1 ks. Note that pressure increases with growing a/R. and decreases with growing
Rs/ R, but the former is larger than later. Such a pressure increase decreases the self-diffusion
coefficient of Cu by a factor of 5. Also, pressure increases in the shell from the range 0.324-0.347
GPa to 0.461-0.484 GPa. Note that the pressure gradient term in diffusion equations promotes
diffusion of Cu in the shell, but suppresses diffusion of vacancies. The resultant effect is pro-
moting; when the pressure gradient term is neglected, time for formation of the maximum-size

hole increases by 71 s.
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Figure 3.4 Evolution of distribution of vacancy concentration in a core and Cu atoms in a
shell for R, = 9.05nm at § = 373 K.

3.1.5.3 Hollow oxide

When the metal core disappears, the remnant Cu atoms in a shell diffuse to the outer surface
and react with oxygen, until complete disappearance of Cu atoms. This process takes about
100 s with deceleration in time. Pressure reduces at the void surface from 0.515 to 0.499 GPa,
increases at the external surface from 0.495 to 0.499 GPa, and finally becomes homogeneous.

The final pressure is caused by surface tension.

www.manharaa.com




76

., - ..—1000s
00‘2’5; _— 7 —-100s
’ ] —= 105
0.020 - ~1s
0.015 - -—0.1s
] —0.01s
0.010 -
0.005-; a
O :.: \’ \I T T \‘-.\ T T ( )
0.0 5.0 10.0 r (nm)
..— 1000
-=100s
— 0.01s
] N, (b)
0 -Illllllll|lll\|llll:hll|

9 10 11 12 13 r(nm)

--=— 1000 s
p(GPa) _ --100s
1757 ——10s
] cee 1 S
132 = 0.1s
.05 3 0.01
0702"\;“’"‘—:‘-—-“- i
0.35]
035 ©

o
w1 4

Figure 3.5 Evolution of distribution of vacancy concentration in a core (a) and Cu atoms in
a shell (b), as well as pressure in a core (c) for R, = 9.05nm at § = 373 K during
the nanovoid growth.

www.manharaa.com




7

a :

nm :

12 : == 9.05nm
6 3 —I11.5nm
4 — 15.9nm
2 3

T

i (ks)

o
=
[\
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3.1.6 Comparison with existing approaches

There are several main differences between our approach and results and those in, [17,
18] which allowed us to obtain good comparison with experiments and to elucidate the void
nucleation and growth mechanisms.

(1) In the general case, one has to include misfit volumetric strain due to chemical reaction,
as. [17,18] In, [17,18] because of misfit strain and neglected compressive stresses due to surface
tension, huge tensile stresses in a core (and compressive stresses in a shell) appeared, which
led to the idea that they can cause void nucleation due to fracture. However, because in our
problem the reaction occurs at the surface (rather than in bulk) and interface between metal
and oxide is incoherent, internal stresses due to chemical reaction are negligible. For example,
Al oxide shell is amorphous below some thickness (4 nm), and thus interface is incoherent and
does not generate internal stresses. Even for crystalline shell, for Al particles with R, = 20
to 40 nm and shell growing during chemical reaction to m = 1.76, lattice spacing in Al did
not differ from that in bulk sample; [52] i.e., internal stresses are negligible. That is why we
excluded misfit strain but included surface tension, which resulted in compressive pressure both
in core and shell and in elimination of the fracture hypothesis.

(2) The suggested void nucleation criterion shows that, surprisingly, compressive pressure
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promotes void nucleation.

(3) We took into account that the self-diffusion coefficient is proportional to the actual
(rather than equilibrium) concentration of vacancies, which increased it at the initial stage by
twelve orders of magnitude. We also took into account that the diffusion coefficient of metal

in oxide at the nanoscale is much larger than in bulk material.

3.1.7 Concluding Remarks

A continuum mechanochemical approach for nucleation and growth of nanovoid in reacting
NP is developed that treats explicitly void nucleation and the effects of stresses. A counterintu-
itive effect of pressure on nucleation is found. Experimental results for Cu NPs are described.
Based on obtained results, the following regimes can be used to accelerate void formation and
make it possible in micron-scale particles. Initially, high temperature at zero pressure should be
applied to accelerate diffusion and reach the desired level of n,. Then, temperature should be
reduced, and pressure may be applied to reduce n., and cause void nucleation. After the void
reaches the size corresponding to low-enough 7.4, pressure should be removed and temperature
increased to accelerate diffusion. Accordingly, to suppress void nucleation by the above mech-
anism, one has to increase temperature and tensile pressure, and to suppress void growth, one
has to reduce temperature and apply compressive pressure. A similar continuum framework
can be used for modeling the nanotube fabrication based on the Kirkendall effect. [53] Note that
it is understood that application of continuum methods to such small nuclei can be questioned.
However, continuum concepts are successfully applied even to single vacancy (see [54] and the
concept of the center of dilatation) and are routinely used in nucleation theory for a critical

nucleus consisting of a few atoms (see examples in [19]).
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CHAPTER 4. GENERAL CONCLUSIONS

Li-ion batteries: In Chapter 2 several conceptual advancements in diffusion and stress re-
laxation based on a thermodynamically consistent approach were introduced. This nonlinear
approach was applied to analyze stress generation during lithiation/delithiation in a nanoscale
amorphous 5% anode. Generally the amorphous Si is considered as an isotropic material how-
ever, the compositional expansion/contraction strain can be anisotropic that the source of this
anisotropy is deviatoric stresses. Based on this concept, a new dissipative term added to dis-
sipation inequality and an additional term appears in the chemical potential. It was shown
that the effect of deviatoric stresses on chemical potential increases the driving force for both
processes, i.e., lithiation/delithiation. Applying a postulate of realizability, a linear kinetic
equation for stress relaxation was also derived. This formula connects the deviatoric part of
compositional stress to deviatoric compositional deformation rate through a constant (stress
relaxation parameter). This new stress relaxation mechanism has two advantages compared to
a viscoplastic model. First, one can employ this model to relax the stress even below the yield
stress. Second, only a single scalar parameter is needed to reproduce the induced stresses in
experimental studies; however, the viscoplastic model requires two material parameters as well
as the yield strength as a function of Li concentration. Based on this theoretical framework,
we proposed to relax the internal stresses by cyclic lithiation/delithiation with small magni-
tude. Additionally, the stress evolution was modeled for different nanostructures (thin film,
solid, and hollow nanoparticle) during lithiation-delithiation. The calculated stress level shows
that amorphous hollow nanopaticles are good candidates for anodes. Finally, the results were
compared with known experimental and atomistic simulation data.

Hollow formation: Chapter 3 develops a coupled continuum mechanics approach based on

the Kirkendall effect to model nucleation and growth of a nanovoid in reacting NPs. This model
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includes the effect of stress on void nucleation and diffusion. The results show that the core is
under compression due to surface stress. This eliminates a fracture hypothesis and promotes
void nucleation by decreasing equilibrium concentration of vacancies at the void surface. The
model was checked by the available experiments. The effect of pressure on void nucleation sug-
gests using a thermo-mechanical method to control the hollow formation. One can control the
synthesis process by controlling the pressure and temperature in different stages of oxidation

to accelerate/decelerate the formation of hollow nanoparticles.
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APPENDIX A. DERIVATION OF THE CONSTITUTIVE EQUATION
FOR k USING THE POSTULATE OF REALIZABILITY

We start first with deriving the equation for k from the consideration of the chemical
potential, then from the the compositional dissipation rate, and we show that the results
coincide. Let us consider reservoir of A atoms with a chemical potential u, in contact with
A, B sample with chemical potential (B, k"), where B is the set of all parameters affecting
the chemical potential (e.g., po, S, z, ...). Tensor k™ designates all possible directing tensors,
which are considered as free parameters, among which the actual tensor k is to be chosen. We
designate Au(B, k™) := pr — u(B, k™). The A, B sample is assumed to be small enough so that
heterogeneities of all parameters can be neglected. Let the magnitude of the flux of A to the
sample be described by experimentally determined monotonous function j = f(Au(B, k))-e.g.,
Jj= b(B)V;la:A,u(B, k)/Ay—with the size Ay of the order of magnitude of the size of a sample.

Insertion. We will consider the possibility of the A transport to the A, B sample with the
arbitrarily prescribed magnitude of the flux j. Due to equation j = f(Au(B,k)), this means
that the magnitude of Au(B, k) is prescribed as well, and it will be designated as Apg. Plot
Ap(B, k") vs. k¥ for arbitrary fixed parameters B is schematically shown in Fig. A.1.

We assume that this function has a maximum value Afpiyq.(B) corresponding to some k
for each B, which is clear from the definition in Eq. (35). To find an actual directing tensor
k among all possible k¥, we will apply the postulate of realizability formulated in realizability-
I realizability-1I (see also Section 3.2). We will use the following formulation:

If A transport from A reservoir to A, B small volume with a prescribed magnitude of the flux j
can occur, it will occur.

Let us fix j and all parameters B in such a way that Au(B, k") < App for all k* —i.e.,

horizontal line Aug is above the curve Au(B,k*)-and A transport from A reservoir to A, B

www.manaraa.com



86

Au
All.l * *
Au (k): Ap (k)
Ay Apty -
I *
) : Au (25 k)
A (B, k) |
I
I
1
* : -
k K k
(@
Au Au
#
N1 (B LK) N
A (B k)
Au
A'a[l ¢ * : *
A (k) A (k)
|
1
k K k
®)

Figure A.1  Variation of Au(B, k") vs. k* for arbitrarily fixed parameters B for insertion (a)
and extraction (b).

small volume cannot occur with a magnitude of the flux j. Let us continuously change B or p,
in order to increase Au(B,k*). A transport from A reservoir with a magnitude of the flux j
can occur when the curve Ay (B, k™) and the horizontal line Ay have common points, so that
Au(B,k*) = Apg for some of k*. The first time this happens is when Ay = Apimaz(B)- ie.,
when the curve Ap(B, k™) and line Ay touch. Then, according to the postulate of realizability,
A transport from A reservoir to A, B small volume with a prescribed magnitude of the flux

j will occur. Thus, actual k corresponds to the Apipq,(B)—i.e., an extremum principle of the

maximum driving force for the A transport is valid:
Ap(B, k") — max; Ap(B, k") < Au(B, k) k. (1)
Since in Eq. (35) sign(z) > 0, H > 0, and J > 0, the extremum principle (1) is equivalent to

S:k* — Irllc%x; S:k > S:k* Vk*. (2)

Maximizing expression (2) for 8:k* with respect to k*, we obtain collinearity of k and S, see
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FExtraction. Consider the extraction (e.g., delithiation) process—i.e., # < 0. Plot Au(B, k")
vs. k* for arbitrary fixed parameters B has the minimum value Ay, (B) corresponding to
some k for each B (Fig. A.1b ). The postulate of realizability is formulated as follows:

If A transport from ApB small volume to A reservoir with a prescribed magnitude of the flux j
can occur, it will occur.

Let us fix j and all parameters B in such a way that Au(B,k*) > Aug for all k™i.e.,
horizontal line Ayyg is below the curve Au(B,k*) and A transport from A, B small volume to
A reservoir cannot occur with a magnitude of the flux j. Let us continuously change B or
pr in order to decrease Ap(B,k*). A transport to A reservoir with a magnitude of the flux j
can occur when the curve Ap(B, k™) and the horizontal line Apy have common points, so that
Apo = Ap(B, k") for some of k*. The first time this happens is when Apug = Apiin(B)-i.e.,
when the horizontal line Apg and the curve Au(B, k™) touch. Then, according to the postulate
of realizability, A transport from A, B small volume to A reservoir with a prescribed magnitude
of the flux j will occur. Thus, actual k corresponds to the Ajip,in (B)—i.e., an extremum principle

of minimum driving force for the A transport is valid:
Du(BK") = mins Au(B k) > Au(B.k) K (3)

Since in Eq. (35) sign(¢) < 0, H > 0, and J > 0, the extremum principle (3) is equivalent to
the principle (2), which leads to the same Eqs. (36)-(37). Extremum principles Eq. (1) and
Eq. (3) can be combined in the principle of the maximum magnitude of the driving force for

the A transport, which is valid for both insertion and extraction:

[Ap(B.k*)| — max; |Ap(B, k)| < |Au(B, k)| VK, (4)
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APPENDIX B. APPLICATION OF THE POSTULATE OF
REALIZABILITY TO COMPOSITIONAL DISSIPATION RATE

While Egs. (36) and (37) completely determine the compositional dissipation rate, we will
apply the postulate of realizability to rederive equation for k for two reasons: (1) for ( = 1,
there is no contribution of k to the chemical potential, and the above derivation is not valid;
(2) for ¢ < 1, we would like to check whether application of the postulate of realizability to
the compositional dissipation rate gives the same results as for its application to the chemical
potential.

We assume that functions ¢ (8, z) and H(S, z,|Z|) are known from experiment or atomistic
simulations; rate & is prescribed, and our main task now is to find k for any given S. Let us
consider the possibility of the occurrence of the compositional dissipation rate with an arbitrary
prescribed value Dey. We start with deviatoric stress S, for which ¢J8:k*H (S, z, |i|)|#| < Deo
for all k*, so that the compositional deformation rate with the dissipation rate D, is impossible.
We will apply the postulate of realizability in the following formulation:

As soon as the compositional deformation rate with the prescribed value of the dissipation
rate Deo is possible, it will occur at the first chance.

We change 8 continuously and check all possible k*. The first possibility to have a com-
positional deformation rate with the dissipation rate D.g is the first fulfilment of the equality
¢JS:kH (S, x,|i|)|Z| = Dy for one of the k. According to the postulate of realizability, this
opportunity should be realized, and it can be realized with this k only because for all other k*

we have inequality. Thus,
CIS:kH (S, x,|i|)|2| = De > ¢JS:k*H(S, 2, |3|)|2], — S:k>8:k* VK" (1)

Extremum principle (1) coincides with that in Eq. (2) and consequently results in the same
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Egs. (36)-(39). Thus, both formulations give equivalent solutions.
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APPENDIX C. CHOICE OF THE GENERALIZED
THERMODYNAMIC FORCES AND RATES

The choice of the generalized thermodynamic forces and rates in the expression D, :=

¢J g:df is not unique. In particular, we obtain

§:dS = 8:F, .U . US~ . F! —US—LF \.8.F..U° = F;\.8:F..U--US". (1)
First, we can postulate the relationship between generalized stress (U f -LF 8_1-3' -F¢)s and the
S

conjugate rate Uc, or between Fe_l-g-Fe and Uf-Uf_l. While in principle Eq. (37) can be
reduced to the relationship between these new generalized stresses and rate and some additional
tensors, if we apply the postulate of realizability to the relationship between these new conjugate
variables the results will be different. Thus, the choice of the generalized thermodynamic
forces and rates in the expression for the dissipation rate is an additional hypothesis. The
convenience of § and df is that they have the same structure—i.e., they are both deviators—
and the simplest proportionality between them, df = kS, is not contradictory. What is more
important is that it corresponds to experiments (see below). In contrast, the relationship
UCS = k(U -F;1.8-F.), is contradictory because in the double contraction of this equation
with U1 the left side Uf:Uf_l = 0, but the right side (U 1.F_1.8.F,);:US"" # 0. The
alternative choice U CS-U 5=l — xF_1.8:F, (assuming that the right-hand side is nonsymmetric)
prescribes not only (U f‘U f ~1), but also (U f-U f_l)a, which gives three more equations than

required. Indeed, we assume that we can neglect the anisotropy of the elasticity rule due to U,

and U, and S = 8. Then, using the polar decomposition F, = R.-U., we have
FL8:F, U . US™ = U-LR.-S-R,-UU - US™! = RLS-RAUS-US™ = 8:R.-(US-US™Y),-R., (2)

where we take into account the facts that for the isotropic elasticity rule R:-S-R. = f.(U.) ten-

s018R:-S-Re-and Ughavethe same principle axes and U, and U 6_1 eliminate each other. Also,
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due to the symmetry of RZ-S-Re, the conjugate rate should also be symmetric. Thus, accept-
ing Uf-Uf‘l = kF_1.8:F, for the weakly anisotropic elastic rule, we obtain (Uf-Uf_l)a =0
in the limit of isotropic elasticity. This is a redundant and contradictory equation, which in
general cannot be satisfied because UCS is a symmetric tensor, which is completely determined
by (USUSY,.

On the other hand, for isotropic elasticity, according to Eq. (2), § and (_if .= R(U f-U S~ R.
are the conjugate stress and compositional deformation rates, respectively, which possess the
same properties as S and df considered above. Also, application of the postulate of realizability
results in § = m&f, which is, however, not completely equivalent to S = ndf when tensors U,
and U, are not coaxial. The logical advantage of using S and df is that it is justified for the
anisotropic elasticity rule and is not contradictory for the isotropic elasticity rule. Utilization
of § and ¢_if is valid for the isotropic elasticity rule only and does not coincide with the limit

case, which can be obtained from the general expression for the anisotropic elasticity rule when

anisotropy disappears.
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APPENDIX D. SMALL ELASTIC STRAIN APPROXIMATION FOR A
THIN FILM AT RIGID SUBSTRATE: ANALYTICAL SOLUTION

Using Eq. (87) and €& = 0, we obtain for in-plane strain

EcL2 = —552- (1)

For small elastic strains, equations can be significantly simplified. First, in Eq. (87) we can
substitute logarithmic strain with linear strain, &, = U, — I and . = U, — I with e, < I and
e. < I. However, we will keep logarithmic strain where necessary in order not to violate some
limit cases (see below). Since o3 = 0 and J, ~ 1, the elasticity rule for in-plane stress simplifies

to

E E

0= T fer =~ Ea (2)
Equation (27) for in-plane direction reduces to
Vo _.p _Us, J 3)
Ue2 Us  3Je
Substituting Eq. (3) into kinetic Eq. (52) for the principle axis 2,
g—i;z = %Jgjcsign(jc), (4)
we obtain
éL, = %agjcsign(jc) + Bi;c = —%séjcsign(jc) + 3ch (5)
This differential equation can be simplified to
oo M ign() + 5 ©)

dJ. — 3(1—-v) T3
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The analytical solution for constant E/(1 — v) is

ely = texp (— 3{32})) [—Ewp]ntegralEi[?)(iEfu)] + Emp[ntegralEi[S{fﬁ)]} (7)

for lithiation and

552 = %e:cp (3{%2\)) [—ExplntegralEi[g(?—i\y)] + EprntegralEi[%]] (8)

[ee]
ExplntegralEi(z) == [*_ %tdt = const +In |z + 3 If_I:' :
k=1 """

for delithiation. For the case with no relaxation A = 0, the analytical solution is simplified to
ey = 11In(J.), which is true for large strain as well. This was the reason why we kept logarith-
mic strains for small-strain approximation. The in-plane compositional logarithmic strain and
biaxial stress for different A and constant mechanical properties (£ = 90 GPa and v = 0.28)
are plotted in Fig.D.1. The plot for stress has a shape similar to that for z-dependent E in

Fig.2.4. Increasing A reduces the in-plane compositional strain and consequently decreases the

biaxial stress.

—-— A=0.1 GPa"
— — A=0.4 GPa
—— A=0.8 GPa™

T~
~-w
T e
=

- - -

——
—_—
—
.-

—-— A=0.1GPa"
— — A=0.4 GPa"
—— A=0.8 GPa

(b)

Figure D.1 In-plane compositional strain ¢% (a) and biaxial stress (b) vs. compositional
Jacobian for different A for lithiation.
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